Tutorat 2

Ensembles fractals

Frédéric Chevy – chevy@lkb.ens.fr

1 Dimension fractale

Considérons un sous-ensemble S de \mathbb{R}^n , une droite une surface... Si il existe un homéomorjphisme de S sur un ouvert de \mathbb{R}^d , on dira que S est de dimension topologique d. Ainsi, un
point, une courbe et une surface sont respectivement de dimensions topologiques 0, 1 et 2.

Au long du $XX^{\text{ème}}$, les mathématiciens ont mis à jours des ensembles (ce que l'on appelle
aujourd'hui des objets fractals) dont la structure complexe a nécessité la généralisation du
concept de dimension à des valeurs non entières, dites dimensions fractales. Ces objets ce sont
révélés par la suite d'une grande utilité en physique, puisqu'on a pu montrer au cours des
années 80 qu'ils permettaient de décrire des phénomène complexes tels que la turbulence ou la
formation d'agrégats.

1.1 Activités d'éveil : la dimension de boîte

N.B.: Dans les questions (1.1) et (1.2), on pourra se contenter de raisonnements "avec les mains".

Soit un ensemble \mathcal{S} de \mathbb{R}^2 . On cherche ici à calculer le nombre $N(\epsilon)$ de carré de côté ϵ nécessaire pour recouvrir \mathcal{S} .

- 1. Justifier brièvement que l'on attend $N(\epsilon) \propto \epsilon^{-D}$ avec D = 0, 1, 2 si \mathcal{S} est un point, une courbe ou une surface.
- 2. Tester "expérimentalement" le résultat précédent sur la sinusoïde et le rond noir fournis en annexe.
- 3. Même question dans le cas de la longueur de la côte de Grande-Bretagne (îles et Irlande comprises). Qu'observe-t-on? Expliquer ce phénomène.

L'étude des trois exemples précédents amène à définir une nouvelle dimension D_b , dite dimension de boîte, telle que :

$$D_b = \lim_{\epsilon \to 0} \left| \frac{\ln(N(\epsilon))}{\ln(\epsilon)} \right|.$$

Cette dimension D_b mesure alors le degré de complexité de S: plus S sera "torturé", plus D_b sera grande.

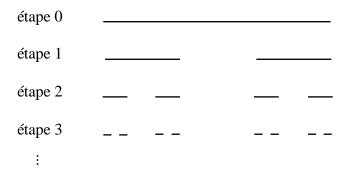


Fig. 1 – Construction de l'ensemble de Cantor.

1.2 Un exemple d'objet fractal : l'ensemble de Cantor

Un exemple classique d'ensemble fractal est l'ensemble de Cantor que l'on construit itérativement de la façon suivante :

- On part du segment [0,1] que l'on coupe en trois segments fermés de même longueur et on élimine le segment central.
- On coupe ensuite chaque segment restant en trois segments de longueur égale et on rejette à chaque fois le segment central.
- On itère ensuite indéfiniment ce processus. Les points non éliminés après une infinité d'étapes forment l'ensemble de $Cantor \mathcal{K}_3$.
 - 1. Montrer que \mathcal{K}_3 est formé des réels x de la forme :

$$x = \sum_{n=0}^{\infty} a_n 3^{-n},$$

avec n = 0, 2 (On pourra raisonner en base 3).

En déduire que \mathcal{K}_3 est indénombrable.

- 2. Calculer la dimension de boîte de \mathcal{K}_3 .
- 3. Chercher dans la littérature ou sur internet d'autres exemples d'objets fractals.

2 Distance de Hausdorff et convergence des suites d'ensembles

Nous avons vu que l'ensemble de Cantor se définissait comme limites d'une suite de compacts d'un espace métrique \mathcal{E} . Afin de préciser cette notion de "limite de suite d'ensembles", nous allons dans cette partie montrer qu'il est possible de définir une distance H sur l'ensemble $\mathcal{K}(\mathcal{E})$ des compacts de \mathcal{E} , dite distance de Hausdorff.

On trouvera des rappels de topologie en fin d'énoncé.

2.1 Préliminaire : théorème du point fixe

Soit \mathcal{E} un espace métrique complet. On dit que l'application $f: \mathcal{E} \to \mathcal{E}$ est k-contractante s'il existe $k \in]0,1[$ tel que pour tout couple (x,y) d'éléments de \mathcal{E} on a :

$$d(f(x), f(y)) \le kd(x, y).$$

On désire montrer dans ce préliminaire que toute application f k-contractante admet un unique point fixe x_0 vérifiant $f(x_0) = x_0$.

- 1. Montrer que si x_0 existe, alors il est unique.
- 2. On considère la suite u d'éléments de \mathcal{E} définie par :

$$\begin{cases} u_0 &= a \\ u_{n+1} &= f(u_n) & n \ge 1, \end{cases}$$

où a est un élément quelconque de \mathcal{E} .

- (a) Montrer que f est continue. En déduire que si u converge alors sa limite est un point fixe de f.
- (b) Montrer que pour tout entier n, $d(u_n, u_{n+1}) < k^n d(u_0, u_1)$. En déduire que pour tout couple (p, q) d'entiers strictement positifs, on a :

$$d(u_p, u_{p+q}) \le d(u_0, u_1) \frac{k^p}{1-k}$$

puis que u est une suite convergente.

3. Déduire des questions précédentes que toute application k-contractante possède un unique point fixe.

2.2 Distance de Hausdorff

Soient \mathcal{A} et \mathcal{B} deux éléments de $\mathcal{K}(\mathcal{E})$. On pose $h(\mathcal{A}, \mathcal{B}) = \sup(d(x, \mathcal{B})|x \in \mathcal{A})$. La distance $H(\mathcal{A}, \mathcal{B})$ est alors définie par :

$$H(\mathcal{A}, \mathcal{B}) = \sup(h(\mathcal{A}, \mathcal{B}), h(\mathcal{B}, \mathcal{A})).$$

1. Donner une interprétation géométrique de H. Montrer en particulier que :

$$\begin{cases} \forall x \in \mathcal{A}, \ d(x, \mathcal{B}) \leq H(\mathcal{A}, \mathcal{B}) \\ \forall y \in \mathcal{B}, \ d(y, \mathcal{A}) \leq H(\mathcal{A}, \mathcal{B}) \end{cases}$$

2. Montrer que H définit bien une distance sur $\mathcal{K}(\mathcal{E})$.

Indication: pour montrer l'inégalité triangulaire, on partira de $d(x,z) \leq d(x,y) + d(y,z)$ valable pour tout triplet $(x,y,z) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ et l'on pourra montrer les résultats suivants:

- (i) $\forall (x, y, z) \in \mathcal{A} \times \mathcal{B} \times \mathcal{C}, \ d(x, \mathcal{C}) \leq d(x, y) + d(y, z)$
- (ii) $\forall (x,y) \in \mathcal{A} \times \mathcal{B}, \ d(x,\mathcal{C}) \leq d(x,y) + d(y,\mathcal{C}) \leq d(x,y) + H(\mathcal{B},\mathcal{C})$
- (iii) $\forall x \in \mathcal{A}, \ d(x, \mathcal{C}) \leq d(x, \mathcal{B}) + H(\mathcal{B}, \mathcal{C}) \leq H(\mathcal{A}, \mathcal{B}) + H(\mathcal{B}, \mathcal{C})$

Puis on conclura.

3. Pour les amateurs de topologie : montrer que $\mathcal{K}(\mathcal{E})$ muni de la distance de Hausdorff H est complet (difficile!).

2.3 Iterative Function System (IFS)

Les IFS constituent une généralisation de la méthode de construction de l'ensemble de Cantor : il s'agit en effet de l'application itérée d'une suite de transformation aboutissant à un ensemble fractal.

1. Considérons une application k-contractante $f: \mathcal{E} \to \mathcal{E}$. On peut la prolonger en une application \tilde{f} de $\mathcal{K}(\mathcal{E})$ dans lui même par :

$$\tilde{f}: \mathcal{K}(\mathcal{E}) \to \mathcal{K}(\mathcal{E})$$
 $\mathcal{A} \mapsto \tilde{f}(\mathcal{A}) = \{f(x) | x \in \mathcal{A}\}.$

- (a) Pourquoi $\tilde{f}(A)$ ainsi défini appartient-il bien à $\mathcal{K}(\mathcal{E})$?
- (b) Soit \mathcal{A} et \mathcal{B} deux compacts de \mathcal{E} .
 - i. Soient $x \in \mathcal{A}$ et $y \in \mathcal{B}$. Montrer que $d(f(x), \tilde{f}(\mathcal{B})) \leq kd(x, y)$.
 - ii. En déduire que pour tout x de \mathcal{A} , $d(f(x), \tilde{f}(\mathcal{B})) \leq kH(\mathcal{A}, \mathcal{B})$ puis que $H(\tilde{f}(\mathcal{A}), \tilde{f}(\mathcal{B})) \leq kH(\mathcal{A}, \mathcal{B})$.
- (c) Soit \mathcal{A}_p une suite d'éléments de $\mathcal{K}(\mathcal{E})$ définie par :

$$\begin{cases} \mathcal{A}_0 = \mathcal{X}_0 \\ \mathcal{A}_{p+1} = \tilde{f}(\mathcal{A}_p) & p \ge 1, \end{cases}$$

où \mathcal{X}_0 est un compact de \mathcal{E} .

Montrer que \mathcal{A}_p converge dans $\mathcal{K}(\mathcal{E})$ vers une limite que l'on précisera.

2. On généralise le résultat suivant de la manière suivante : soient $f_{i=1...m}$, m applications $k_{i=1...m}$ -contractantes classées de façon à avoir $k_1 \leq k_2 \leq ... \leq k_m$. On définit l'application \tilde{F} de $\mathcal{K}(\mathcal{E})$ dans lui même par :

$$\tilde{F}: \mathcal{K}(\mathcal{E}) \to \mathcal{K}(\mathcal{E})$$

$$\mathcal{A} \mapsto \tilde{F}(\mathcal{A}) = \bigcup_{i=1}^{m} \tilde{f}_{i}(\mathcal{A}).$$

- (a) Pourquoi $\tilde{F}(A)$ ainsi défini appartient-il bien à $\mathcal{K}(\mathcal{E})$?
- (b) Montrer que \tilde{F} est k_m -contractante.
- (c) Soit \mathcal{A}_p une suite d'éléments de $\mathcal{K}(\mathcal{E})$ définie par :

$$\begin{cases}
\mathcal{A}_0 = \mathcal{X}_0 \\
\mathcal{A}_{p+1} = \tilde{F}(\mathcal{A}_p) & p \ge 1,
\end{cases}$$

où \mathcal{X}_0 est un compact de \mathcal{E} .

Montrer que \mathcal{A}_p converge dans $\mathcal{K}(\mathcal{E})$ vers un compact \mathcal{A}_{∞} . Pourquoi peut-on qualifier \mathcal{A}_{∞} d'auto-similaire?

2.4 Applications

- 1. Dans le cas $\mathcal{E} = \mathbb{R}$, comment choisir les f_i de façon à obtenir pour point fixe l'ensemble de Cantor (on pourra les chercher sous forme de fonctions affines).
- 2. Dans le cas où $\mathcal{E}=\mathbb{R}^2$ muni de la distance euclidienne, supposons que l'on utilise des transformations affines de la forme :

$$f_i(x) = a_i + g_i(x),$$

où $a_i \in \mathbb{R}^2$ et g_i est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 .

Si l'on se fixe une base de \mathbb{R}^2 dans laquelle les coordonnées de x sont notés x_1 et x_2 , chaque f_i peut mettre sous la forme :

$$f_i(x) = \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} + \begin{pmatrix} r_i \cos(\phi_i) & -s_i \sin(\psi_i) \\ r_i \sin(\phi_i) & s_i \cos(\psi_i) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

(a) Montrer que :

$$\begin{pmatrix} r_i \cos(\phi_i) & -s_i \sin(\psi_i) \\ r_i \sin(\phi_i) & s_i \cos(\psi_i) \end{pmatrix} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix} \cdot \begin{pmatrix} \cos(\delta_i) & \sin(\delta_i) \\ \sin(\delta_i) & \cos(\delta_i) \end{pmatrix} \cdot \begin{pmatrix} r_i & 0 \\ 0 & s_i \end{pmatrix},$$

avec $\theta_i = (\phi_i + \psi_i)/2$ et $\delta_i = (\phi_i - \psi_i)/2$. En déduire une interprétation géométrique des paramètres $(\alpha_i, \beta_i, r_i, s_i, \phi_i, \psi_i)$.

On admettra dans la suite que si $\rho_i = \max(r_i, s_i)$ et $\rho_i \sqrt{1 + \sin(2|\psi_i - \phi_i|)/2} < 1$, alors f_i est contractante.

(b) On choisit m=4 et on prend les valeurs suivantes (les angles sont donnés en degrés):

i	α_i	β_i	ϕ_i	ψ_i	r_i	s_i
1	0	1.6	-2.5	-2.5	0.85	0.85
2	0	1.6	49	49	0.3	0.34
3	0	0.44	120	-50	0.3	0.37
4	0	0	0	0	0	0.16

Vérifier que les f_i sont contractantes et décrivez qualitativement l'allure de la limite de l'IFS (on pourra prendre pour condition initiale un carré).

A Rappels sur la topologie des espaces métriques

- Soit un espace \mathcal{E} . L'application $d: \mathcal{E} \times \mathcal{E} \to \mathbb{R}$ définit une distance sur \mathcal{E} si elle satisfait les trois axiomes suivants :
 - 1. $\forall (x,y) \in \mathcal{E}^2$, $d(x,y) = 0 \Leftrightarrow x = y$;
 - 2. $\forall (x,y) \in \mathcal{E}^2$, d(x,y) = d(y,x);
 - 3. $\forall (x, y, z) \in \mathcal{E}^3$, $d(x, z) \leq d(x, y) + d(y, z)$.

ullet Soit u une suite d'éléments de \mathcal{E} . u est une suite de Cauchy si elle satisfait la condition suivante :

$$\forall \epsilon > 0, \exists N > 0 \text{ tq } \forall (p,q) \in \mathbb{N}^2, \ p > N \Rightarrow d(u_p, u_{p+q}) < \epsilon.$$

 \mathcal{E} est dit complet si toutes les suites de Cauchy sont convergentes. En particulier, pour tout $n \in \mathbb{N}$, \mathcal{E} est complet.

• Soit x un élément de \mathcal{E} et \mathcal{A} un sous-ensemble de \mathcal{E} , on définit la distance de x à \mathcal{A} par :

$$d(x, \mathcal{A}) = \inf_{y \in \mathcal{A}} (d(x, y)).$$

Si \mathcal{A} est fermé, cet inf. est en fait un min.

• L'ensemble $\mathcal{K}(\mathcal{E})$ des compacts de \mathcal{E} est composé des ensembles fermés et bornés.