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• introduction / review 

• topics in more detail: “quantum simulators”

- dissipative Hubbard dynamics

- engineering three-body Hubbard Hamiltonians
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quantum optics cond mat & quantum info

laser

F
–

electric dipole 
moment

rotation

polar molecule in electronic 
and vibrational ground state

ne
w sy

st
em

2- & 3-body 
interactions

ring exchange

...

(analog vs. digital quantum simulators)
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This talk ...

• Dissipative dynamics of atoms in optical lattices

- immersion in a superfluid as a “phonon bath”
- ... as  quantum optics problem
- quantum reservoir engineering

• Hubbard, spin models (with polar molecules)
- short review of ideas and models
- three-body interactions

BECA. Griessner, A. J. Daley, S. R. Clark, 
D. Jaksch, PZ , PRL (2006); NJP (2007)

H = −J
∑
〈ij〉

b†i bj +
1
2

∑
i �=j

Uijninj +
1
6!

∑
i �=j �=k

Wijkninjnk.

hopping tunable two-body 
interaction

strong repulsive off-site 
three-body interaction compare: string net

Fidkowski et al., 
cond-mat/0610583

H.P. Büchler, A. Micheli, PZ, preprint
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Dissipative dynamics of cold atoms in optical lattices

• quantum optics with cold atoms
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Cold atoms in optical lattices:
1. Coherent Hubbard dynamics

• Loading bosonic or fermionic atoms 
into optical lattices

• Atomic Hubbard models with 
controllable parameters

bose / fermi in 1,2&3D
spin models
“AMO Hubbard toolbox”

kinetic energy:
hopping

interaction:
onsite repulsion

nonresonant 
laser

AC Stark shift band structure (1D) tunneling

optical lattice as array of microtraps

onsite 
interaction

Ĥ = −
α �=β

Jαβ â
†
αaβ +

1
2
U

α
â†α â

†
α âα âα

U

single band 
Hubbard model

“(analog) quantum simulators”

Jaksch et al. PRL 1998
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AMO Hubbard toolbox

laser  triangular lattice Raman

D. Jaksch & PZ, 
Annals of Physics 2005

• time dependence

• 1D, 2D & 3D

• various lattice configurations

• create effective magnetic fields

• spin-dependent lattices

• laser induced hoppings
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Why? … condensed matter physics & quantum information

• condensed matter systems

strongly correlated systems
time dependence, e.g quantum phase 
transitions
...
exotic quantum phases(?)

• quantum information

new quantum computing scenarios, 
e.g. one way quantum computing

entangling qubits via "Ising"
(cluster state)

qubits on a lattice

• experiments [Bloch et al. 2001, Esslinger, Porto, Grimm & Denschlag …]

analog & digital 
quantum simulators
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• coherent Hubbard dynamics • dissipative dynamics

L ρ =
k

k

2

(
2ckρ̂c†k− c†kckρ̂ − ρ̂c†kck

)
H = . . .

two band Hubbard model (1D)
+ Raman coupling

competing dynamics

2. Dissipative Hubbard dynamics

BEC

• BEC as a “phonon reservoir”

quantum reservoir engineering 
1D model

• master equation:
d
dt

ρ̂ = − i
h̄
[Ĥ, ρ̂]+L ρ̂

validity (as in quantum optics)

interband transitions
RWA + Born + Markov

A. Griessner et al. PRL 2006; 
NJP 2007

quantum jump 
operator

does not see the optical lattice
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2. Dissipative Hubbard dynamics

BEC

• BEC as a “phonon reservoir”

quantum reservoir engineering 

• Caldeira-Leggett

linear system-bath couplings, ohmic / superohmic
quantum phase transitions in Josepshon Junction arrays

• polarons

• phonon mediated interactions

as opposed to ...

• master equation:
d
dt

ρ̂ = − i
h̄
[Ĥ, ρ̂]+L ρ̂

A. Griessner et al. PRL 2006; 
NJP 2007
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Why (controlled dissipation)?

• why? engineering reservoirs for ...

dissipative quantum phase transitions / crossover
...
applications: cooling etc. 

high-Tc superconductors

minimal model: two-dimensional one-band Hubbard model 

U

binding

energy

0.05

-0.05

(units of hopping t)

binding energy 4% of 
width of Bloch band

• Anderson (1987): ground state = resonating valence bond state  

d
dt

ρ̂ = − i
h̄
[Ĥ, ρ̂]+L ρ̂

competing dynamics
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“think quantum optics”

• driven two-level atom + spontaneous 
emission

|g〉

|e〉
optical 
photon

atom
laser photon

• reservoir: vacuum modes of the 
radiation field (T=0)

• reservoir: Bogoliubov excitations of the 
BEC (@ temperature T)

BECBEC |0〉

|1〉
“phonon”

• trapped atom in a BEC reservoir

laser assisted atom + BEC collision

energy scale!

• optical pumping, laser cooling, ...

purification of electronic, and 
motional states ?
ρa⊗ |vac〉〈vac|→ |ψa〉〈ψa|⊗ρ ′
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Models ...

• Model A: Dark state cooling in a Bloch band (“dark state laser cooling”)

single atom
N non-interacting atoms + 
adiabiatic turn on off interactions

• Model B: Master equations N interacting atoms

d
dt

ρ̂ = − i
h̄
[Ĥ, ρ̂]+L ρ̂

|ψBEC〉 =
1√
N !

(∑
i

a†
i

)N

|vac〉

Hubbard dynamics
(superfluid / Mott)

coupling to a local current drives system 
into N-body dark state

competing dynamics

N bosons

quantum reservoir engineeringHubbardology
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Subrecoil (“dark state”) laser cooling

• “dark state” laser cooling: accumulate atoms near q 0

spontaneous photon:
recoil

laser

Raman subrecoil cooling (Kasevich and Chu) (see also: VSCPT Cohen et al.)

step 1: excitation & filtering step 2: diffusion
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Levy statistics approach (Cohen-Tannoudji et al.)

trapping 
region

excitation profile:

• excitation profile and trapping region

λ = 2 square pule

λ = 4 Blackman pulse

R(q) ∼ |q|λ

• time evolution

etc.
time

trapping

return

trapping times

return times

P(τ) ∼ τ−(1+1/λ )

〈τ〉 → ∞ (λ > 1)

T (N) =
N

∑
i=1

τ i ∼ Nλ

T̂ (N) =
N

∑
i=1

τ̂ i ∼ N〈τ〉

generalized 
central limit 

theorem
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iff λ > 1, then all atoms for Θ = T (N)+ T̂ (N) → ∞ in cooling region

1
2

kBT =
δq2

2m
∼ Θ−2/λ

n0(Θ) ∼ Θ1/λ

temperature

trapping 
region

R(q) ∼ |q|λ

time
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Raman cooling within a Bloch band: qualitative

• step 1: (coherent)
quasimomentum selective 
excitation

Laser: square pulse sequence

• requirements: Ω 	 8|J1|
• Note: relevant energy scale given by |J1|

A. Griessner et al. PRL 2006; 
NJP 2007
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Raman cooling within a Bloch band: qualitative

• step 1: (coherent)
quasimomentum selective 
excitation

• step 2: (dissipative)
decay to ground band

A. Griessner et al. PRL 2006; 
NJP 2007
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Model: 1. Coherent dynamics

• 1D lattice

• Hamiltonian

Ĥ0 = ∑
q,α

εα
q

(
Âα

q

)†
Âα

q +(ω −δ )∑
q

(
Â1

q

)†
Â1

q +
Ω
2 ∑

q

[(
Â1

q

)†
Â0

q−δq +h.c.
]

εα
q = −2Jα cos(qd)

ĤI =
1

2M
∑

q1,q2,q3,α
Uαβ

(
Âβ

q1

)† (
Âα

q2

)†
Âα

q3
Â

β
q1+q2−q3

validity: Jα ,Uα,β ′
,Ω 	 ω, ω 	 ω⊥

Bloch band

Rabi freq.

collisional interactions

tune via scattering 
length

Bloch bands
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Model: 2. “Spontaneous Emission”

BECBEC

spectrum of
Bogoliubov excitations

• BEC reservoir

• interaction: interband 0 - 1

δψ̂b =
1√
V k

(
ukb̂ke

ik.r+ vkb̂
†
ke

−ik.r
)ψ̂b =

√
ρ0+δψ̂b

Bogoliubov

Ĥint = gab

∫
ψ̂†
a(r)ψ̂a(r)ψ̂

†
b(r)ψ̂b(r)d

3r
1

0
|k|

S(k)
structure factor

ĤBEC = E0+
k�=0

ε(k) b̂†kb̂k

|0〉

|1〉

εk = [c2(h̄k)2+(h̄k)4/(2mb)2]1/2

S(k) = (uk + vk)2 =
|k|2

2mbEk

∼ gab
k
S(k,ω)1/2〈w1|eik.r|w0〉b̂k|1〉〈0|+h.c.

“spontaneous emission”
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“Spontaneous Emission”

BECBEC

• interband transitions spontaneous emission rate

typical numbers

tunability

= 2π ×1.1 KHz

∼ ρ0a
2
s

√
ω

as = 100a0

ρ0 = 5×1014cm−3

ω = 2π ×100 KHz trap frequency

scattering length

density

density

scattering length: 
magnetic or optical Feshbach resonance

weak coupling

spectrum of
Bogoliubov excitations
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• interaction: intraband ...

ε0
q≈0 = ε0

q′ + c|k|
q = q′ + k

forbidden if J0 <

√
μωRma/(2mb)

π

no heating / cooling due to intraband transitions

we ignore intraband processes in the following

Rem.: validity of master equation ...

We can cool to temperatures lower than the BEC
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Master equation

• ... in analogy with spontaneous emission (kBT � h̄ω, i.e. T = 0)

L ρ̂ = ∑
k

Γk

2

(
2ckρ̂c

†
k − c

†
kckρ̂ − ρ̂c

†
kck

)

ck ≡ ∑
j

(â0
j)

†(â1
j)e

−ikx j

= ∑
q

(Â0
q−k)

†Â1
q

quantum jump 
operator|k| ≤ kmax =

√
2mbω

1D momentum 
along lattice axis

modulo first Brillouin zone

• spontaneous emission rate Γ = ∑k Γk

dΓ
dk

=̂
L

2π
Γk =

g2
abρbmaa2

0k2

4π
e−a2

0k2/2

Γ =
g2

abρbmb

2πa0

[√
2

mb

ma

e−
mb
ma −

√
π
2

erf
(√

mb

ma

)]

(1) kmax  π/d,

(2) kmax < π/d. [superradiance]

no superradiance

energy conservation
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Results: single atoms

• Ground state q=0 momentum peak

• Quantum trajectory simulation of the master equation

Temperature: kBT=2J0(  q)2 Dark state occupation: n0(q=0)

• Typical temperatures kBT/4J0 ∼ 2×10−3 in t f J0 ∼ 50
• Analysis in terms of Levy flights

Laser: square pulse sequence

4J0 � kBT � ω.
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Many (non-interacting) bosons

• Assume: we can switch off interaction between bosons aaa → 0 with Fesh-
bach resonance; independent bosons

• Ground state cooling: q= 0 peak in momentum distribution

• Numerical analysis: Quantum Boltzmann master equation

Temperature: Dark state occupation: n0(|qd|<0.06)

• Bosonic enhancement of cooling

ẇm =
∑
k,q

Γk

[
m0

q−k(1 ± m1
q)wm′ − m1

q(1 ± m0
q−k)wm

]
q q q

occupation of momentum state q in Bloch band
l f d lQBME is a rate equation for wm ≡ 〈m |ρ |m〉 , i.e. classical configurations wm of

atoms occupying momentum states m = [{m0
q}q,{m1

q}q] in the two Bloch bands.

We failed to apply DMRG 
type ideas because our 

temperatures are too low 
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Many fermions

• Many spin-polarized (non-interacting) fermions

• Ground state: filled Fermi sea

• Typical temperatures kBT/4J0 ∼ 10−2 in t f J0 ∼ 500
• Slowing down due to Pauli blocking

Fermi Sea

Square Pulse

Blackman Pulse
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Strongly correlated systems, and many body dark states (?)

• above scheme works well for (essentially) non-interacting systems

• strongly correlated systems

cooling N atoms with U=0 (tune scattering length a=0)
turn U on adiabatically to obtain a strongly correlated state

• many-body dark states ?

A. Griessner et al. PRL 2006; NJP 2007
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F
–

Polar Molecules

• what’s new? ... electric dipole moment
– couple rotation to DC / AC 

microwave fields

– strong dipole-dipole / long range 
couplings

dipole moment

rotation

• ... in electronic & vibrational ground state

Atoms & Ions

• trapped ions / Wigner crystals

• CQED

atom
cavity

laser

• cold atoms in optical lattices

• atomic ensembles

• motivation? ... coming experiments

• new physics?

Questions: 

• ... in addition what we do with cold 
atoms
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Polar molecules

electric dipole 
moment

Background material:
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Preparation of polar molecules in ground state

• Techniques are being developed for ...

trapping and cooling
generation: photoassociation & buffergas cooling exp: Demille, Doyle, Mejer, 

Rempe, Ye …

internuclear separation

trap

Raman laser / spontaneous 
emission

photoassociation

Frank-Condon 
overlaps!

exp: all cold atom labs

photoassociation:
100% efficient 

See, e.g., Special Issue on Ultracold Polar Molecules, Eur. Phys. J. D 31, 149–444 (2004).

Mott insulator: 
atoms to molecules
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Sr2+

O2–

req = 1.919 
d = 8.9 D

X 1 + ... electronic groundstate: 
S=0 ... closed shell (..9 2 10 2 4 4 )

req = 1.919  ... equilibirum distance
d = 8.900 D ... dipole-moment

eq = 19.586 THz ... vibrational const.

Beq = 10.145 GHz ... rotational 

I=0 ... no nuclear momenta for 88SrO, 86SrO
          

heteronuclear molecule with strong persistent 
dipole moment in electronic groundstate.

Sr2+O2– ... ionic binding

Rydberg-Klein-Rees (RKR)-potentials
(R. Skelton et al., 2003)

Spectroscopy 
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CaF – rotational, fine and hyperfine structure

X 2
1/2

 ... el. groundstate: 

S=  ... from open (Ca-)shell

I=  ... nuclear momentum (of F)

req = 1.951  ... eq. distance

μ0 = 3.077 D ... dipole-moment
F–

e–

el.spin .. S

Ca2+

electric dipole 
moment

talks to optical radiation:
electronic excitations

(like an alkali atom)

talks to microwave radiation:
rotational excitations

(alkali atom: hyperfine / magnetic)

F–

I .. nucl.spin

N .. orb.ang.mom.

weak couplings :-(

strong coupling

32



Single polar molecule I: Rotational spectroscopy

N=0

N=1

N=2

H = B N2

1) Rigid Rotor:

2B  20GHz

closed shell molecules 
 (SrO, CsRb, … )

4B  40GHz

"charge qubit"

• anharmonic spectrum EN=B N(N+1)

• electric dipole transitions d ~ 3-10 Debye

- microwave transition frequencies

• no spontaneous emission  < 0.1  mHz

- excited states are "useable"

• encode qubit

d
z

F–Sr2+ O2-

X1
g
+

33



Single polar molecule II: Rotational spectroscopy

H = B N2 +  N·S2) Spin Rotation Coupling

molecules with an unpaired
 electron spin (CaF,CaCl,...)

• for e  providing spin degree of freedom
- encode qubit in rot. ground states

• strong spin-rotational mixing in N>0

- Raman transitions

X2
g
+

J=N+S

N=0

N=1

J=1/2

J=1/2

J=3/2

2B  20GHz

  100 MHz

"spin qubit"

F–

e–

S

F–Ca2+

N

• for nuclear degree of freedom
– magnetic trapping, clock states, ...

F–Cl–

I

34



Two polar molecules: dipole – dipole interaction

• dipole moment gives rise to
interaction of two molecules

features of dipole-dipole interaction

long range ~1/r3

angular dependence

strong! (temperature requirements)
r3

repulsion attraction

vs

35



          

Adiabatic potentials for two 

(unpolarized) polar molecules

• Rotor

~ 30-60 nm

R e
b
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Effective Spin-Spin Interactions:
qualitative picture

• effective spin-spin coupling: microwave drive + dipole-dipole

microwave
(control field)

spin-rotation
coupling

dipole-dipole:
 anisotropic + long range 

Integrating out high energy excitations gives an effective low energy Hamiltonian,
we can engineer spin-Hamiltonian

positions fixed by optical lattice
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Overview:

Condensed matter and quantum information with cold polar 
molecules
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H = −J
∑
〈ij〉

b†i bj +
1
2

∑
i �=j

Uijninj +
1
6!

∑
i �=j �=k

Wijkninjnk.

hopping tunable two-body 
interaction

strong repulsive off-site 
three-body interaction compare: string net

Fidkowski et al., 
cond-mat/0610583

H.P. Büchler, A. Micheli, PZ, preprint

Condensed matter aspects

• Extended Hubbard models in 1D and 2D in optical lattices

• Spin toolbox with cold molecules in optical lattices

YY
 ZZ

XX

Kitaev model

Hspin = J⊥ ∑
x−lks

σ i
xσ j

x + J⊥ ∑
y−lks

σ i
yσ j

y + Jz ∑
z−lks

σ i
zσ j

z

A. Micheli, G. Brennen, PZ, Nature Physics 2006
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• Self-assembled “dipolar crystals” with cold polar molecules

induced & 
aligned dipoles 

d2
ind

R3

dipolar crystal:

H.P.Büchler, E.Demler, M.Lukin, A. Micheli, 
N.V.Prokof'ev, G.Pupillo, PZ, PRL (2007)

Quantum melting
- appearance of a crystalline phase
- quantum melting to a superfluid phase

40



• Self-assembled “dipolar crystals” with cold polar molecules

induced & 
aligned dipoles 

d2
ind

R3

dipolar crystal:

H.P.Büchler, E.Demler, M.Lukin, A. Micheli, 
N.V.Prokof'ev, G.Pupillo, PZ, PRL (2007) G. Pupillo, M. Ortner et al., work in progress

~100 nm

atoms in dipolar lattices:
Hubbard models + phonons

applications:

quantum information:
- memory
- ion-trap type quantum computing
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• AMO - solid state interfaces: hybrid quantum processors

- solid state quantum processor

- molecular quantum memory

Quantum information

Cooper Pair Box
(superconducting qubit)

superconducting microwave 
transmission line cavity

(photon bus)

single molecules or 
molecular ensembles / crystals 

(quantum memory)

circuit CQED: R. Schoelkopf, M. Devoret, S. Girvin (Yale)

P.Rabl, D. DeMille, J. Doyle, M. Lukin, R. Schoelkopf and PZ, PRL 2006

A.André, D.DeMille, J.M.Doyle, M.D.Lukin, S.E.Maxwell, P.Rabl, R.J.Schoelkopf, PZ, Nature Physics (2006).

molecule(s)optical 
cavity

laser

optical 
(flying) qubit

• Remark: trapping and cooling / read out of molecules close to / via strip line
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Three-body interactions & extended Hubbard models

• how to ...

- generate strong three-body interactions while switching off two-body terms

• extended Hubbard models in 1D and 2D
- with tunable two body interactions & repulsive three-body
- phases: example 1D hard core bosons with repulsive three-body terms

H.P. Büchler, A. Micheli, PZ, preprint
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Dynamics with n-body interactions

• Hamiltonians of condensed matter physics are effective Hamiltonians, 
obtained by integrating out the high energy excitations

three particle 
interaction

two particle 
interaction

Veff ({ri}) =
1
2

∑
i �=j

V (ri − rj) +
1
6

∑
i �=j �=k

W (ri, rj , rk) + . . .

H =
∑

i

(
p2

i

2m
+ VT(ri)

)
+ Veff ({ri})

effective interaction

usually small 
corrections

• Hamiltonians with three-body interactions

- ground states with exotic phases & excitations (topological, spin liquids etc.)
- difficult to find examples in nature (Fractional Quantum Hall Effect,  ... AMO?)

example: He

We start in the continuum and 
add the optical lattice later

44



Dynamics with n-body interactions

• Hamiltonians of condensed matter physics are effective Hamiltonians, 
obtained by integrating out the high energy excitations

three particle 
interaction

two particle 
interaction

Veff ({ri}) =
1
2

∑
i �=j

V (ri − rj) +
1
6

∑
i �=j �=k

W (ri, rj , rk) + . . .

H =
∑

i

(
p2

i

2m
+ VT(ri)

)
+ Veff ({ri})

effective interaction

turn off (?)

• Cold gases of atoms and molecules

- we know the high energy degrees of freedom & manipulate by external fields
- Q.: switch off two-body, while generating strong repulsive three-body (?)

strong & repulsive (?)

... with polar molecules dressed by external fields
(without introducing decoherence)
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Hubbard models with three-body interactions

H = −J
∑
〈ij〉

b†i bj +
1
2

∑
i �=j

Uijninj +
1
6!

∑
i �=j �=k

Wijkninjnk.

• Extended Hubbard models in 1D and 2D

• Rem.: Typical Hubbard models with polar molecules involve strong dipole-
dipole (two-body) offsite interactions

hopping energy two-body interaction three-body interaction

- strong three-body
  interaction

- tunable two-body
  interaction

W/J ∼ 0...30

U/J ∼ −300 ... 300

J ∼ 0.1Er

+ small next-nearest 
neighbor interactions
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Hubbard models with three-body interactions

H = −J
∑
〈ij〉

b†i bj +
1
2

∑
i �=j

Uijninj +
1
6!

∑
i �=j �=k

Wijkninjnk.

• Extended Hubbard models in 1D and 2D

• Rem.: Typical Hubbard models with polar molecules involve strong dipole-
dipole (two-body) offsite interactions

hopping energy two-body interaction three-body interaction

+ small next-nearest 
neighbor interactions

• Rem.: effective higher-order interactions are also obtained from a Hubbard 
models in J/U-perturbation theory ... 

- example: tJ-model
- however, these effective interactions are necessarily small
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How to calculate effective n-body interactions ... basic idea

• Step 1: “dressed” single polar molecule

• Step 2: interaction between molecules

We dress molecules prepared in the 
ground state by adiabatically switching 
on AC / DC electric fields.

electric field

E

For fixed positions of the molecules 
we adiabatically switch on dipole-
dipole interactions.

dipole-dipole

r1

r2

r3

r5

... with the interaction potential in the spirit of a Born-Oppenheimer approximation.

three particle 
interaction

two particle 
interaction

Veff ({ri}) =
1
2

∑
i �=j

V (ri − rj) +
1
6

∑
i �=j �=k

W (ri, rj , rk) + . . .

We identify the interaction energy

polar molecules

r4

Our goal is now (i) to choose a molecular setup and (ii) calculate the BO potential.
48



Step 1: Single molecule as an effective spin-1/2

• Single molecule as a “spin-1/2 in an effective magnetic field”

Ω

|g〉

Δ
|e, 1〉

|e, 0〉

|e,−1〉

rotation spectrum:

microwave field
+

static electric field

shift away by external 
DC / AC fields 

Two-level System

- in rotating frame / RWA

H
(i)
0 =

1
2

(
Δ Ω
Ω −Δ

)
= hSi

-  dressed eigenstates

    and energies

|+〉i = α|g〉i + β|e, 1〉i
|−〉i = −β|g〉i + α|e, 1〉i

E± = ±
√

Ω2 + Δ2/2

|g〉i → |+〉i (for Δ > 0)

-  adiabatically turning on AC field -  induced static dipole moments
   due to the static electric field

We choose the following setup ...
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Details ...

• rotational spectrum in AC & DC field • DC field

two-level system

-  induced static dipole moments
   due to the static electric field
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Convenient mapping: (fixed) molecules to (fixed) spin-1/2

• Single molecule • Spin-1/2 in magnetic field

AC + DC
electric field

E

H
(i)
0 = hSi

h

dipole-dipole 
interactions

r1

r2

r3

r5

effective
magnetic field

H(i)
rot = BN2

i − diE(t)

• Interacting (fixed) molecules

Vd−d(rij)

• Interacting (fixed) spins

r4

Our goal is to calculate the energy for fixed {ri}, i.e. the Born-Oppenheimer
potential Veff ({ri}). This is conveniently done in the spin-picture.

spin-spin
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Step 2: Interactions

• Ensemble of (static) molecules as 
interacting spins in magnetic field

Dipole-dipole interaction 

- in rotating frame / RWA

ν(r) =
1 − cos θ

r3
dipole-dipole 
interaction

XXZ- model in a magnetic field

H =
∑

i

hSi +
∑
i �=j

D
[
(· · ·)(Sx

i Sx
j + Sy

i Sy
j ) − (· · ·)Sz

i Sz
j + (· · ·)Sz

i

]

r1

r2

r3

r5

r4

spin-spin

h

effective
magnetic field

• Paramagnetic phase                      or h >> D/a3 D/(a3|h|) = (R0/a)3 << 1

weakly interacting regime:
interaction potential in perturbation theory mean distance

R0

• Provided                        we can calculate the interaction energy perturbatively|ri − rj | > R0
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Interaction energy (= Born Oppenheimer potential)

Interaction energy

(i)  diagonalizing the internal Hamiltonian 
     for fixed interparticle distance         .

(ii) The eigenenergies 
     describe the Born-Oppenheimer
     potential a given state manifold.

(iii) Perturbation theory to calculate the
      interaction energy

{ri}∑
i

H
(i)
0 + Hstat

int + Hex
int

E({ri}) interparticle
distanceD√

Δ2 + Ω2
= R3

0 � a3

magnetic
 field

h

“weak” dipole interaction for ...

Πi|+〉i → |G〉

spin-spin

E(1)({ri})= . . .

E(2)({ri})= . . . |ri − rj | > R0

valid for:

Condon point

R0
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Extended Hubbard model

Wijk = W0

[
a6

|Ri − Rj |3|Ri − Rk|3 + perm
]

.

H = −J
∑
〈ij〉

b†i bj +
1
2

∑
i �=j

Uijninj +
1
6!

∑
i �=j �=k

Wijkninjnk.

Uij = U0
a3

|Ri − Rj |3 + U1
a6

|Ri − Rj |6

U0 = λ1D/a3

• Hamiltonian:

• two-body interaction

• three-body interaction

tunable
repulsive

repulsive

DC

AC

• hard core onsite condition ... a0 � R0 � λ/2
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1D hard core Boson with three-body

 Bosonization
  
- hard-core bosons
- instabilities for densities:

- quantum Monte Carlo simulations
  (in progress)

n = 2/3

n = 1/3

n = 1/2

μ/W

J/W

Critical phase

- algebraic correlations
- compressible
- repulsive fermions  

Solid phases

- excitation gap
- incompressible
- density-density correlations  

- hopping correlations (1D VBS)

n = 2/3 n = 1/2 n = 1/3

〈ΔniΔnj〉

〈b†i bi+1b
†
jbj+1〉

H = −J
∑

i

[
b†i bi+1 + b†i+1bi

]
+ W

∑
i

ni−1nini+1
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