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Few-body problem in ultracold gases?
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Size of configuration space

N-body problem in 3D m=) 3N (degrees of freedom)

- 3 (translational invariance)
- 3(2) (rotational invariance)
= 3N-6(5)

2-body mm)  Single coordinate. Radial Schrodinger equation. Not
enough accuracy for realistic potentials

3-body ==) 3 coordinates. Involved numerics with simple model
potentials.
4-body —> 6 coordinates. Reliable solution impossible even for

simple model potentials

Fortunately, many interesting few-body problems can be solved in an
elegant way by using the short-range character of interparticle forces



Bethe — Peierls boundary conditions

Bethe and Peierls (1934), “Quantum theory of the diplon”
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Diplon (deutron) is a weakly bound dimer with R~ 10""em, a~4.5-100"cm
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Thomas effect

Thomas (1935), “The interaction between a neutron , D
3y” \
and a proton and the structure of °H /k 2 n%utrons
proton y
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Decrease the range of the proton-neutron potential keeping their binding energy constant

3

»
»

3

NN
o
SO

\\\\\\\\3
§\\\\\\\\\\§ =

The trimer binding energy tends to infinity! ‘ Thomas effect or Thomas collapse

Example: three *He atoms form much deeper bound molecule than two *“He atoms



Neutron-deuteron scattering

O ©
Skorniakov and Ter-Martirosian (1957) derived an integral equation for the

neutron-neutron-proton 3-body problem in the zero-range approximation.
They calculated the neutron - deuteron scattering length.

Exact in the limit R, <a

This results are more applicable for the field of ultracold gases because

Nuclear matter: Ultracold atoms:

R,~10 "cm, a~4.5-10 "cm R,~0.5-10 °cm, a>10"cm



Borromean binding

) Borromean rings — symbol of strength in unity.
/ \ “ Remove one ring and the other two fall apart

The symbol is used in a number of
other applications

Borromean sculptures (John Robinson) \

Christian Trinity \




Borromean binding

.. In nuclear physics to represent halo nuclei
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Example: stable °He nucleus
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Not a big surprise. Three bosons
attracting each other via this potential
could form a trimer state _ \
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Attraction, no 2-body
bound states!
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Efimov effect

¢ Efimov (1970) found
2 that the number of
() é R a — o0 trimer states

N,~log(al/R,) o

NN

with the accumulation
pointat £=0

Efimov state — weakly bound trimer state

Discrete scaling symmetry: three-body observables depend on R,
butif R’ =R exp(=*m/s,), they do not change

For three identical bosons §,~ 1.00624. This number depends on the
symmetry (Fermi, Bose) and on the masses of particles



Few-ultracold-atom physics after 1995

BEC of atoms is metastable. Increasing density
leads to enhanced 3-body recombination

3-body recombination to a weakly bound state O N
Theoretical papers: ,"{\ O --.
Fedichev, Reynolds, and Shlyapnikov (1996) ‘% / r O}
Nielsen and Macek (1999) O%~--%0 Ny
Esry, Greene, and Burke (1999)

Bedaque, Braaten, and Hammer (2000) «,.~ha'lm

MIT (1999) BEC + Feshbach resonance E=)» Strong losses

Difficult to reach strongly interacting regime with bosons! Efimov states are not
stable because of the relaxation to deep molecular states



New era: BCS-BEC crossover, molecules

Bose gas of dimers

("“BEC side” of the
resonance)

Interaction between
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Shlyapnikov (2003)

Atom-molecule

Two-component Fermi
gas (“BCS side” of the
resonance)

scattering:
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Need Efimov physics in a stable system?

Fermionic Li and K mixtures are stable, but there are no weakly bound trimer
(Efimov) states. Reason — Fermi statistics:

/__\;/\/\/\Q
: . <4—_ strong centrifugal barrier
resonant interactions % between identical fermions

Can we have Efimov states and stability? Yes

We need:
» protective fermionic statistics at short distances (high energies)
» resonant interactions at large distances (low energies)

Consider fermionic heteronuclear mixtures with large mass ratio



Born-Oppenheimer approximation

PN

W(r):exp(—x|r—R/2|)

Light atom wavefunction:

Bethe-Peierls boundary condition gives:

Effective interaction between
heavy fermions is provided by
exchange of the fast light particle.
Born-Oppenheimer approximation.

exp(—«x|r+R/2|)
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X(R)=EX(R)
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Solving the Schrodinger equation
for the heavy atoms we take into
account their fermionic statistics:

AI(1+1)
MR’
Symmetry = =123,

C

eﬂ(R)~U6ﬁ+

52
MR’

1(1+1)— o.mﬂ)
m

N— —

~r

B

R<a,E=0 =) (-0

010 R*+ Bl R*)X (R)=0

X(R)

R’ v.=1/2+VB+1/4




Critical mass ratio

R<a,E=0 =2 (—9°/0R’+B/R)X(R)=0
X(R)xR" v.=1/2+B+1/4

M
B=I(I+1)—0.16 =
m
MIm<13.6 = B>-1/4 MIm>13.6 = B<-—1/4
X(R)cR™ X(R)ocVRcos (s logR/r,), s,=V—1/4—P
Unique wavefunction without zeros “Fall of a particle to the center in R
=== no trimer states. Centrifugal potential”. Infinite number of zeros of the
barrier is stronger than the induced wavefunction. Infinite number of trimer
attraction states. Efimov effect

Li-Li, K-K and K-Li mixtures are stable, since the mass ratio is smaller than
the critical one. No Efimov states as well



K-Li mixture in an optical lattice

Optical lattice increases the effective
mass of K atoms. We need only a factor
- of 2

a

Efimov trimer states

On the other hand, the relaxation to l'
deeply bound molecular states is a local
processes and it is insensitive to the Exactly what we want:

lattice potential

a

At distances smaller than the optical a
lattice constant the atoms “remember”
their natural mass ratio (6.7<13.6)

Efimov physics in a stable system




Interaction of heteronuclear molecules

Why different isotopes?

» Way toward dipolar gases

Weakly bound molecules/—\ dipolar gas with long-
range interactions
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 For fermionic mixtures qualitatively different physics of the BCS-
BEC crossover for large M/m, gas-crystal transition



Scattering length for Fermi-Fermi molecules
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Born-Oppenheimer approximation
g \ Effective interaction is the sum of the
O energies of light fermions in “gerade”
f and “ungerade” states.

R>a
R
: i B
______________ - U (R)N—2E—I—2h2 exp(—2R/a)
______________ / eff 0 maR
Vi 12
+ —2R Y IRI=EFY(R
lM L2 (2 Ria) ¥ (R)=EY (R

Tunneling probability | Pocexp (—const V M/m) can be completely neglected
for M/m>100




Formation of trimers

“Dangerous” trimer state



Hybrid Born-Oppenheimer approximation

» Exact solution 1s technically
difficult for M /m>20
O O/ » BO does not work for R<a

a Solution - Hybrid BO:
\ Integrate out the “gerade” fermion

Bethe-Peierls boundary
conditions for r >+ R/2




V(R r)=2 .  fu(R) fL(R)f(R)

Hyfu(R)=€, f,(R)

;<u=\/2m(osu—E)/h2
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Summary

» Efimov effect in ultracold gases is difficult to observe
due to the relaxation to deeply bound states

* |t might be possible with fermionic mixtures in an
optical lattice. One can also study the mass dependence
of few-body observables

* In this respect Li-K mixture is promising

» Hybrid Born-Oppenheimer approach simplifies life in
the case of large mass ratios
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