"Interacting Bose-Einstein condensates - in lattices and atom interferometers" Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms

6/18/07 Henri Poincare Workshop Paris

What happens when gases are

Ultracold: nanokelvin 100 million times colder than outer space

Ultralow density: 10¹⁴ cm⁻³ 100,000 thinner than air

Ultralow pressure: 10⁻¹⁴ atmosphere (nanopascal)

Almost nothing

0.01 femtomole

But:

Those atomic gases can be strongly interacting

They can show strong correlations

Like liquids Like solids Like superconductors

How do get strong interactions and correlations?

- Strong forces
- Optical lattices
- Lower dimensions

Courtesy Markus Greiner

The Superfluid-Mott Insulator transition

Shallow Lattices - Superfluid

Deep Lattices – Mott Insulator

The Superfluid-Mott Insulator Transition in Optical Lattices

Increase lattice depth Diagnostics:

- Loss of Coherence
- Excitation Spectrum
- Noise correlations
- Spin changing collisions
- Microwave Spectroscopy
 - (Atomic clock shifts)

Atomic clock as diagnostics tool for many-body physics

2-photon Microwave Spectroscopy

Imaging the shell structure

G.K. Campbell, J. Mun, M. Boyd, P. Medley, A.E. Leanhardt, L. Marcassa, D.E. Pritchard, W.K., Science 313, 649-652 (2006).

Lifetime of shells

Measuring the Onsite Interaction

Many-body physics to enhance an atomic clock

An Atomic clock using a Mott insulator state

Advantages:

n=1

- High density, but no clock shift for the n=1 peak
- Pulse length can be much longer than tunneling time

 $U = 35 E_{recoil}$, N=~100,000, pulse length = 300 ms

Systematic AC Stark shift

Resonance frequency vs lattice depth

Micah Boyd et al., Ph.D. thesis

Superfluid to Mott Insulator Transition

Superfluid flow? Precise location of Mott insulator phase transition

J. Mun, P. Medley, G.K. Campbell, L.G. Marcassa, D.E. Pritchard, WK, preprint.

Critical velocity for superfluid flow

 $u/u_{c} = 0.61$

1 cycle of modulation

0.43 pr

2 cycles

3 cycles

Superfluid phase diagram

Critical lattice depth for the phase transition 13.5 (+/- 0.2) E_R

Mean field theory : 13.6 E_R (Jaksch, 1998) Qauntum Monte Carlo : 13.0 E_R (Capogrosso-Sansone, 2007)

Many-body physics to enhance an atom interferometer

Loading sodium BECs into atom chips with optical tweezers

Atom chip

T.L.Gustavson, A.P.Chikkatur, A.E.Leanhardt, A.Görlitz, S.Gupta, D.E.Pritchard, W. Ketterle, Phys. Rev. Lett. **88**, 020401 (2002).

BEC

arrival

44 cm

BEC

production

Coherent splitter and our double well system

RF dressed potential (Zobay, Garraway; Perrin, Schmiedmayer)

- Atom # : ~ 400,000
- Chemical potential : ~ $h \times 6$ kHz
- Trap frequency : 2.1 kHz (radial), 9 Hz (axial)
- Lifetime at the splitting position: ~1.8 s
- d ~ 8.7 um U ~ h×30 kHz

Fixed total atom number N (Fock state)

Phase coherent state (Well-defined relative phase)

$$|\varphi(t=0)\rangle = \frac{1}{2^{N/2}}\sum_{k=0}^{N} \sqrt{\binom{N}{k}}e^{i\varphi k}|k,N-k\rangle$$

Each of the number states $|k, N-k\rangle$ has different energy depending the relative number of atoms. (dephasing)

$$|\phi(T)\rangle = \frac{1}{2^{N/2}} \sum_{k=0}^{N} \sqrt{\binom{N}{k}} e^{i\phi k} e^{-i\xi T(k-N/2)^2} |k, N-k\rangle \text{ where } \xi = \frac{1}{\hbar} \frac{d\mu}{dk} \Big|_{k=N/2}$$

$$\mu : \text{chemical potentia}$$

Atom-atom interactions $\zeta \neq 0$ scrambles the relative phase

For a harmonic trap and phase coherent state :

$$R = \frac{4\mu}{5\hbar} \frac{1}{\sqrt{N}}$$

Typical coherence time ~ 20ms

Phase diffusion rate
$$R = \tau_c^{-1} = \frac{1}{\hbar} \left(\frac{d\mu}{dN_i}\right)_{N_i = N/2} \Delta N_r$$

Extending Coherence time & Number squeezing

M.Greiner et al., Nature 415, 39) Optical trap (C.-S.Chuu et al., PRL 95, 260403)

Small atom # < 1000

Applying various phase shifts on the condensates at 2ms after splitting, the shifts of the relative phase were measured at 7ms and 191ms

Phase coherence time ~ 200 ms

← Number squeezing?

Quantitative study of phase fluctuation : Circular data analysis

G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, M. Vengalattore, M. Prentiss, W. K., D. E. Pritchard, Phys. Rev. Lett. 98, 030407 (2007)

Phase diffusion and Number squeezing

Phase diffusion model $\Delta \phi(t)^2 = \Delta \phi_0^2 + (Rt)^2$

Blue curve : phase coherent state $R \cong 50 \quad \tau_c \cong 20 \ ms$

Red curve : Number squeezed state (s=10)

 $R \cong 5$ $\tau_c \cong 200 ms$

Black curve : fitted curve including the initial variance $\Delta \phi_0^2$ $\Delta \phi_0^2 = (0.28\pi)^2, R = 5$

• Number squeezing factor s > 10

How to read out an atom interferometer using many-body physics

G.-B. Jo, J.-H. Choi, C.A. Christensen, T.A. Pasquini, Y.-R. Lee, W. K, D.E. Pritchard: *Phase Sensitive Recombination of Two Bose-Einstein Condensates on an Atom Chip, Phys. Rev. Lett.* 98, 180401 (2007).

Motivation 1 : Fundamental aspect

What happens in the recombination process ?

: uncontrolled relative phase

Replenish a continuous BEC (MIT, 2002)

Vortex Formation by Merging BECs (Arizona, 2007)

In-trap Recombination of two BECs with well-defined relative phase

Motivation 2 : Atom Interferometer

Reliable Phase Read-out

Reduce the atomic density before recombination (avoid the deleterious effect of atom-atom interactions)

Matter-wave Interference (MIT, 2004)

Atom Michelson Interferometer (JILA, 2004)

In-trap Recombination of Two Bose-Einstein Condensates

: Two extreme cases

Energy scale : 100 nK per particle Our working assumption : Phase-sensitive excitation of the cloud decays quickly and leads to an Increase in temperature

New Phase readout method possible without ballistic expansion

- Atom recycling possible
- Cavity enhanced detection possible

(a) 100 ms 10 30 Atom Loss Oscillation (%) Amplitude of Condensate 50 Loss of Condensate Atoms (%) (b) 10 ms 10 RF frequency (kHz) 240 30 200 50 160 Split Merge Hold 5 ms (c) 10 (a) 75 Time (ms) 30 100 οu υ Zυ 40 υυ 50 Recombination Time (ms) (d) 1 ms 10 30 50 2 3 5 6 1 Δ

Recombination Time and Condensate Atom Loss

Phase sensitive recombination works over a wide range of Recombination rates.

5 ~ 30 ms recombination time

Hold Time (ms)

The dependence of the condensate atom loss on the recombination time allows us to speculate about different excitations caused by the merging process.

Atom interferometry with phase-fluctuating Bose-Einstein condensates

G.-B. Jo, J.-H. Choi, C.A. Christensen, Y.-R. Lee, T.A. Pasquini, W. K, D.E. Pritchard, to be published.

For highly elongated BECs: $T^* << T_c$

$$L_{coh}/L_{cond} = T^*/T$$

Spatial phase fluctuations are common mode for relative phase

Atom interferometer is robust against phase fluctuations

23ms Hold

Interpretation:

Quantum fluctuation suppressed by strong squeezing Squeezing factor of 30!

Interferometer with phase-fluctuating condensates is very sensitive to relative displacements!

Conclusions

Atom interferometry is robust against

- High density, atom interactions
- Phase fluctuations

Interesting physics mitigates bad effect of interactions

BEC I

Ultracold fermions Christian Schunck Andre Schirotzek Yong-II Shin

BEC II

Na, Li Optical Lattices

Jit Kee Chin Daniel Miller Yingmei Liu Widagdo Setiawan Christian Sanner Aviv Keshet

Atom chips, surface atom optics

BEC III

Tom Pasquini Gyu-Boong Jo Caleb Christensen Ye-ryoung Lee Jae Choi Tony Kim D.E. Pritchard

BEC IV

Atom optics and optical lattices Jongchul Mun Patrick Medley David Hucul David Weld D.E. Pritchard

\$\$ NSF ONR DARPA