
The two-dimensional Fermi gas

M2 of quantum physics 2012-2013

Quantum mechanics exam
Y. Castin and C. Trefzger

Consider a gas of non relativistic fermionic particles of mass m having spin 1/2, living
in a two dimensional space. Particles with opposite spin state ↑ and ↓ undergo s-wave
binary interactions of range b, and at the end of the calculation we will take the zero-range
limit (b → 0) for a fixed value of the two-dimensional scattering length a. There is no
external potential acting on the gas, simply, the gas is confined in a square box of size L,
r ∈ [0, L[2, such that periodic boundary conditions of period L along the orthogonal axis
x and y can be imposed on the wave function. We work in the grand canonical ensemble
where we fix the chemical potential µ rather than the total number of particles N . In
addition, we assume zero temperature, T = 0, such that the gas is in its ground state.
We shall eventually take the thermodynamic limit where L tends to infinity with µ fixed.

Since we do not restrict here to the weakly interacting regime we are led to use the BCS
variational approach, which approximates the ground state of the gas with a condensate
of pair of particles; a reasonable approximation in two dimensions because the existence
of a condensate in the thermodynamic limit is not forbidden at T = 0. We shall obtain
approximate expressions for the total density of the gas ρ and for the gap ∆, the latter
parameter appearing in the spectrum of elementary excitation. We shall then test the
theory by comparing it with current cold atoms experiments.

We recommend to consider each question in its order of appearance. Lecture notes
taken during the course of Y. Castin and during the tutorials of C. Trefzger are allowed
as well as the handout of the course of Y. Castin. The use of a calculator is authorized
for the required numerical applications.

1 Description of the model and diagonalization of the

BCS Hamiltonian

As we saw in section 3.3.9 of the course a Dirac delta interaction does not make any
sense in two dimensions, the simplest substitute that we will use here, is a Kronecker
delta interaction in a lattice model. Thus, we suppose that particle’s position r is forced
to be on a square lattice of eigenaxis x and y and lattice spacing b, with the ratio L/b
being constant. This allows us to restrict particle’s wave vectors k to belong to the first
Brillouin zone of the lattice,

k ∈ FBZ = [−π/b, π/b[2 (1)
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Unlike what has been done during the course we will work in the grand canonical ensemble,
so that we introduce the grand canonical Hamiltonian H = Hcan − µN̂ , where Hcan is
the Hamiltonian in the canonical ensemble and N̂ the total number of particles operator.
The chemical potential µ can have here any sign.

We work in second quantization. We introduce the discretized version of the field
operator ψ̂σ(r), that annihilates a particle of spin state σ ∈ {↑, ↓} at the site of the lattice
pointed by r, with a normalization convention such that the anticommutation rules

{ψ̂σ(r), ψ̂σ′(r′)} = 0 and {ψ̂σ(r), ψ̂†
σ′(r

′)} =
δr,r′δσ,σ′

b2
(2)

reproduce those of the Dirac delta continuous space in the limit b → 0. The grand
canonical Hamiltonian of the lattice model is then

H =
∑

r,σ

b2ψ̂†
σ [h0 − µ] ψ̂σ + g0

∑

r

b2ψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑ (3)

In the one-body term we have introduced the shorthand notation

h0 = − ~2

2m
∆r, (4)

where the discrete Laplacian operator ∆r is defined by the fact that it admits, on the
lattice, the function r 7→ exp(ik · r) as an eigenfunction with eigenvalue −k2, where k

belongs to the first Brillouin zone. We thus have

h0e
ik·r = Eke

ik·r, ∀k ∈ FBZ, with Ek =
~2k2

2m
, (5)

although r is here a discrete variable. Moreover, the bare coupling constant g0 appearing
in the on-site interaction is adjusted so as to reproduce the desired value of the two-
dimensional scattering length a, which leads to

g0 =
2π~2

m

1

ln(Cb/a) (6)

where the value of the numerical constant C > 0 is known but irrelevant for what follows.
We work here in the regime of weak interaction range, in particular

b≪ a, (7)

so that interactions are attractive, g0 < 0, and lead to the BCS pairing between fermions
of opposite spin. In order to approximate the ground state of H we thus introduce the
unnormalized BCS variational states

|Φ〉 = exp

[

∑

r1,r2

b4Φ(r1, r2)ψ̂
†
↑(r1)ψ̂

†
↓(r2)

]

|0〉 (8)

where |0〉 is the vacuum of particles. The value of the “pair field” Φ(r1, r2) has to be
obtained by minimizing the energy functional

E[Φ] = 〈H〉 =
〈Φ|H|Φ〉
〈Φ|Φ〉 (9)
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1.1 Stationarity condition of the energy

a) Using a simple argument show that for all Φ :

〈ψ̂†
↓ψ̂↑〉 = 〈ψ̂†

↑ψ̂↓〉 = 0 (10)

b) We call Φ0 the minimizer of E[Φ] and 〈. . .〉0 the expectation value taken in the
corresponding BCS state |Φ0〉. Why can we suppose that Φ0(r1, r2) is (i) a real-
valued function, (ii) a function of r1 − r2 only, (iii) an even function of r1 − r2?
These three properties of Φ0 are supposed to be satisfied in what follows.

c) Deduce that for all r,

〈ψ̂†
↑(r)ψ̂↑(r)〉0 = 〈ψ̂†

↓(r)ψ̂↓(r)〉0 =
ρ

2
(11)

where ρ is thus the total density of particles in the BCS state of minimal energy.
To this end you may introduce the unitary transformation Û that, for each particle,
changes the state | ↑〉 to | ↓〉 and the state | ↓〉 to −| ↑〉.

d) Also, show that the gap of the BCS state of minimal energy,

∆ = g0〈ψ̂↓(r)ψ̂↑(r)〉0, (12)

is real, is independent of the position r and can be taken to be non-negative. To
this end you may introduce the unitary transformation Û ′ that, for each particle,
changes the state | ↑〉 to | ↓〉 and the state | ↓〉 to | ↑〉.

e) We perform an infinitesimal variation δΦ of the pair field Φ around the minimizer
Φ0. Give the corresponding variation δ|Φ〉 of the BCS state to first order in δΦ, in
the form W |Φ0〉, where W is an operator quadratic in the field operators that you
will write explicitly.

f) Calculate the variation of E[Φ] around Φ0 to first order in δΦ. Conclude that

〈W †(H − E[Φ0])〉0 = 0 (13)

To obtain this result you may consider the variations δΦ and iδΦ of the field of the
pairs.

1.2 The BCS Hamiltonian

A central role in the BCS theory is played by the quadratic Hamiltonian

H = Eaj +
∑

r,σ

b2ψ̂†
σ[h0 − µ̃]ψ̂σ +

∑

r

b2
[

ψ̂†
↑ψ̂

†
↓∆ + h.c.

]

, (14)

where the value of Eaj will be specified in the upcoming question 1.2, and we have set

µ̃ = µ− 1

2
g0ρ (15)
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We will show here that in the framework of the variational BCS theory the Hamiltonian
H stands as a substitute for the complete Hamiltonian H to calculate the energy and the
spectrum of elementary excitations. We will need the energy functional corresponding to
the expectation value of H in a BCS state :

E [Φ] =
〈Φ|H|Φ〉
〈Φ|Φ〉 (16)

Notice that in this equation ρ and ∆ appearing in H are quantities relative to the mini-
mizer Φ0 and thus are independent of Φ.

a) Give, in terms of g0, L, ρ and ∆, the value of Eaj such that

〈H〉0 = 〈H〉0, that is E[Φ0] = E [Φ0], (17)

and we will use this choice in what follows. We recall that Wick’s theorem is
applicable to the evaluation of expectation values in the BCS state.

b) It is admitted here that as a consequence of Wick’s theorem, one has

〈W †H〉0 = 〈W †H〉0 (18)

for any variation δΦ of the pair field, the operator W being introduced in question
1.1e. Conclude that Φ0 is a stationary point, not only of the functional E[Φ], but
also of the functional E [Φ]. Note that this remarkable property is robust, meaning
that it subsists, mutatis mutandis, also if the properties (i), (ii) and (iii) of Φ0

discussed in the question 1.1b are not satisfied, as for example in the presence of an
external potential.

c) It is admitted here that all the eigenstates of H are BCS states. Conclude that the
wanted BCS state |Φ0〉, which is the best variational approximation of the ground
state of H , must be the ground state of H.

d) Close to the thermodynamic limit, consider a weakly excited eigenstate of H whose
BCS variational approximation corresponds to the pair field Φe. We recall that Φe

is always a stationary point of E[Φ], even if it is not the minimizer. Generalize
the previous reasoning to show that |Φe〉 is almost an eigenstate of H. Use the
fact that the expectation values of ψ̂↑ψ̂↓ and of ψ̂†

σψ̂σ in the BCS state |Φe〉 differ
in a negligible way from their corresponding expectation values in the state |Φ0〉.
Conclude that the weakly excited eigenstates of H constitute the BCS variational
approximation for the weakly excited eigenstates of the complete Hamiltonian H .

1.3 Implicit equations

The procedure allowing us to put the quadratic Hamiltonian H in its canonical form,
and thus to diagonalize it, was explained in section 3.2 of the course and was explicitly
implemented for the case of the BCS theory in the tutorial number 6. It is then sufficient
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here to recall some results. The following modal decomposition of the field operators is
available :

ψ̂↑(r) =
∑

k

bk↑
Uk

L
eik·r − b†

k↓

Vk

L
e−ik·r (19)

ψ̂↓(r) =
∑

k

bk↓
Uk

L
eik·r + b†

k↑

Vk

L
e−ik·r (20)

where the operators bkσ, obeying usual anticommutation relations, annihilate a quasi-
particle (or elementary excitation) of wave vector k and of energy

ǫk =
[

(Ek − µ̃)2 + ∆2
]1/2

, (21)

where Ek is defined in equation (5), and µ̃ is defined in equation (15). We also give the
following relation, satisfied by the real-valued amplitudes Uk and Vk of the eigenmodes :

(Uk + iVk)
2 =

Ek − µ̃+ i∆

ǫk
(22)

a) Give the value of UkVk as a function of ∆ and ǫk.

b) Calculate the expectation value of ψ̂↑(r)ψ̂↓(r) in the ground state of H. Deduce
a first implicit equation, called the gap equation, that you will simplify under the
assumption ∆ 6= 0. Verify that in the thermodynamic limit it leads to

−1

g0
=

∫

FBZ

d2k

(2π)2

1

2ǫk
(23)

c) Recall the normalization condition satisfied by Uk and Vk. Deduce the value of V 2
k

as a function of Ek − µ̃ and ǫk.

d) Calculate the expectation value of ψ̂†
↑(r)ψ̂↑(r) in the ground state of H. Deduce

a second implicit equation, called the density equation. Verify that it takes the
following form in the thermodynamic limit :

ρ =

∫

FBZ

d2k

(2π)2

(

1 − Ek − µ̃

ǫk

)

(24)

2 Results in the zero range limit

In this part it will be shown that, as remarkable as it is, it is possible to solve analytically
the implicit gap equation (23) and the density equation (24), in the limit where the
lattice spacing b tends to zero. This will yield explicit values of ∆ and ρ as functions of
the chemical potential µ.

As stated in the general introduction, the limit b→ 0 has to be taken for a fixed value
of the two-dimensional scattering length a. In practice, we will use the known fact that in
this limit, a system of only two particles of opposite spin admits in free space (L → ∞)
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one and only one bound state, called a dimer, of energy at rest given in the canonical

ensemble by

e0 = −4~
2e−2γ

ma2
(25)

where γ = 0.577 215 . . . is the Euler-Mascheroni constant. This property is true for
all values (non infinite and non zero) of the scattering length a. The amplitude of the
interactions will be then conveniently represented in the final result by |e0| rather than
by a.

2.1 Explicit solutions

a) Using equation (6), check that in the limit b→ 0, µ̃ defined in (15) can be identified
to µ, which will be done in what follows.

b) Show that the right hand side of the density equation (24) admits a finite (non-
infinite) limit when b→ 0.

c) Calculate explicitly the integral over R2 that appears in the previous question. In
polar coordinates, after having done the angular integration, you will perform the
change of variable x = Ek in the radial integral. You should obtain ρ as a simple
function of m/~2, µ et ∆.

d) Does the right hand side of the gap equation (23) converge when b → 0 ? Answer
the same question for the left hand side of this equation.

e) We give the two-dimensional generalization of a result of section 3.3.9 of the course :
in a system of only two particles of opposite spin and zero total momentum, the
T (z) matrix associated to the Hamiltonian Hcan (in the canonical ensemble) of the
lattice model admits the following matrix elements

〈k|T (z)|k′〉 =
1

1
g0

−
∫

FBZ

d2q
(2π)2

1
z−2Eq

(26)

where k and k′ are relative wave vectors of the two particles and z ∈ C \ R. From
analytic properties of the resolvent of the Hamiltonian Hcan for two particles of zero
total momentum, obtain an expression of 1/g0 in terms of an integral involving Ek

and the energy e0 < 0 of the bound state.

f) With the help of the previous question, eliminate g0 in the left hand side of equation
(23). By collecting all contributions, obtain only one integral over k, which you will
show to be convergent in the limit b→ 0 with e0 fixed.

g) Calculate the corresponding integral over R
2, by using recommendations of question

2.1c, as well as the change of variable x− µ = ∆ sinh θ. We also recall the explicit
form of the inverse function

arcsinhX = ln(X +
√

1 +X2) (27)

which is useful to determine the limit of a primitive in x = +∞. Finally, you should
obtain a simple expression for arcsinh(µ/∆) as a function of ∆/|e0|.
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h) By applying the hyperbolic sine function to the previously obtained equation, derive
an explicit simple expression of µ as a function of ∆ and |e0|.

i) Conclude that µ2 + ∆2 is a perfect square.

j) Given the answers to the questions 2.1c, 2.1h and 2.1i, recover the result which was
obtained in 1989 by Mohit Randeria and his collaborators :

∆ = [|e0|(|e0| + 2µ)]1/2 (28)

ρ =
m

2π~2
(|e0| + 2µ) (29)

2.2 Physics discussion

a) For a fixed value of the amplitude of the interactions, what is the domain of variation
of the chemical potential µ compatible with the hypothesis ∆ 6= 0 ?

b) Show that the elementary excitation spectrum ǫk has a forbidden band of which you
will give the width as a function of µ and ∆. You will treat the cases µ < 0 and
µ > 0 separately.

c) We now change the amplitude of the interactions. Towards which state does the gas
tend to when a → +∞ ? Note that the total density of the ideal gas of spin 1/2,
at zero temperature and of Fermi energy EF , is simply given by mEF/(π~

2) in two
dimensions.

d) Finally we consider the limit a→ 0+ at fixed density ρ. How does e0 behave in this
limit ? And ρa2 ? And µ ? And the width of the forbidden band in the excitation
spectrum ? What is then the state of the gas ? Carefully justify your answer.

3 Comparison with experiments

In the last decade experimentalists have been able to realize in the laboratories strongly
degenerate fermionic gases of atoms, that is with a temperature T such that kBT ≪ EF .
We assume that this corresponds in practice to zero temperature. In addition, by strongly
confining the atoms along z using a harmonic potential, we freeze their motion along
z in the vibrational ground state, which allows experimentalists to realize an effective
two-dimensional gas in the xy plane. As two atoms in the opposite spin states ↑ and
↓ interact in the real three-dimensional space with the s-wave scattering length a3D, an
effective interaction takes place in the two-dimensional gas, with a known two-dimensional
scattering length a, leading to

e0 = −A~ωz e
(2π)1/2ℓz/a3D (30)

where A ≃ 0.288, ωz is the angular frequency of an atom along z and ℓz = [~/(mωz)]
1/2

is the size of the harmonic oscillator ground state along z.
Moreover, we can access the excitation spectrum of the two-dimensional gas by trying

to induce an atomic transition from the spin state | ↑〉 to another, initially empty, internal
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state |d〉, which is ~ω0 higher in energy, by absorption of a radiofrequency photon of
angular frequency ω and negligible momentum. We then detect the presence or absence
of an atom in the internal state |d〉 according to the value of the detuning δ = ω − ω0.
More precisely, it is found experimentally that the transition of an atom from | ↑〉 to |d〉
is possible only if the detuning is larger than a threshold value δS, δ > δS.

As the amplitude of the atomic interactions between ↑ and ↓ is adjustable by using
a magnetic Feshbach resonance, we can measure the threshold detuning δS for several
values of e0, at a fixed surface density of the two-dimensional fermionic gas. On the other
hand, the final state d must have a negligible atomic interaction with ↑ and ↓. Here are
some values obtained in 2012 in the group of Martin Zwierlein at the MIT for a gas of
6Li, corrected by the anharmonicity effect of the confinement along z :

ℓz/a3D δS/ωz

−0.409 0.085 ± 0.015
−0.177 0.147 ± 0.015

0.007 0.253 ± 0.015

a) Initially, the two-dimensional gas is in its ground state, the internal state |d〉 is empty
and the electromagnetic field contains a photon of energy ~ω. Give the energy Ei

of this initial state, as a function of E[Φ0] and of ~ω.

b) Suppose that an atom has undergone a transition to the internal state |d〉, after
having absorbed a radiofrequency photon, and that the latter has left an elementary
excitation of wave vector k in the two-dimensional gas. In which wave vector is the
atom having undergone the transition ? Give the energy Ef of the final state of the
complete system, as a function of E[Φ0], ~ω0, ǫk, Ek and µ. As we are here in the
grand canonical ensemble you will remember to include the contribution −µ to the
energy in |d〉.

c) Using energy conservation Ef = Ei, show that

~δS = inf
k∈R2

(ǫk + Ek − µ) (31)

d) Show that the function x 7→ x+ (x2 + 1)1/2 is positive and increasing on R. Deduce
the value of ~δS as a function of µ and ∆ then, using the answers to the questions
2.1h and 2.1i, as a function of e0 only.

e) Compare with the experimental results given in the table. For which point(s) is
there good agreement ?

f) To determine the first correction to e0 due to a non-zero range (of order ℓz) of the
effective two-dimensional interaction in the experiments we introduce the expansion
of the two-dimensional scattering amplitude fk for weak relative wave number k :

−1

fk
= 1 +

2i

π

[

ln(eγka/2) − ln 2

2
k2ℓ2z + . . .

]

(32)

Deduce the corrected value |ecorr0 | = |e0|[1 − (ln 2) |e0|
~ωz

+ . . .], and show that this
correction, although heuristic, substantially improves the agreement with the ex-
periment.
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