Lecture 1

2D quantum gases: the static case

Jean Dalibard. Laboratoire Kastler Brossel*, **ENS Paris**

* Research unit of CNRS, ENS, and UPMC

Review article: I. Bloch, J. Dalibard, W. Zwerger, Many-Body Physics with Ultracold Gases arXiv:0704.3011

See also a very recent preprint: L. Giorgetti, I. Carusotto, Y. Castin arXiv:0705.1226

Quantum wells and MOS structures

also Quantum Hall effect, films of superfluid helium, ...

Physics in Flatland

Peierls 1935, Mermin – Wagner - Hohenberg 1966

No long range order at finite temperature

in 2D: $\langle (\vec{u}_n - \vec{u}_0)^2 \rangle \propto \log(n)$

whereas this tends to a finite value in 3D

no real crystalline order in 2D at finite T

The kind of order a physical system can possess is profoundly affected by its dimensionality.

The 2D Bose gas:

Ideal vs. interacting Homogeneous vs. trapped

Low dimension quantum physics

The ideal Bose gas

The uniform case at the thermodynamic limit

In 3D: when the phase space density reaches $n\lambda^3 = 2.612$, BEC occurs

In 2D: for any phase space density $\ n\lambda^2$, the occupation of the various states in non singular, and no BEC is expected.

$$n\lambda^2 = -\ln\left(1 - e^{\mu/kT}\right)$$

$$\mu$$
 varies from $-\infty$ to 0

The density in the trap (semi-classical approach)

 $\rho(\vec{r}, \vec{p}) = \frac{1}{h^d} \frac{1}{\exp\left((\frac{p^2}{2m} + V(r) - \mu)/kT\right) - 1}$

 $n(\vec{r}) \lambda^{3} = g_{3/2} \left(e^{(\mu - V(r))/kT} \right) \qquad n(\vec{r}) \lambda^{2} = -\ln\left(1 - e^{(\mu - V(r))/kT}\right)$

At BEC: $n(0) \lambda^2 = \infty$

Note: $\int n(\vec{r}) d^2r = \frac{\pi^2}{6} \left(\frac{kT}{\hbar\omega}\right)^2$

 $n(\vec{r}) = \int \rho(\vec{r}, \vec{p}) \ d^d p$

Thermodynamic limit:

At BEC:

 $n(0) \lambda^3 = 2.612$

$$n = \frac{N}{L^2} = \text{Cst.}$$
 $N, L \to \infty$

The ideal Bose in a harmonic potential

In 3D, BEC occurs when
$$N = 1.2 \left(\frac{k_B T}{\hbar \omega}\right)^3$$

In 2D, BEC occurs when $N = 1.6 \left(\frac{k_B T}{\hbar \omega}\right)^2$
Bagnato – Kleppner (1991)
Does harmonic trapping make 2D and 3D equivalent?
What about interaction?

Adding interactions...

Interactions in « true 2D »: the square well problem

$$b \qquad \qquad \phi(\vec{r}) \sim e^{i\vec{k}\cdot\vec{r}} + \sqrt{\frac{i}{8\pi}} f(k) \frac{e^{ikr}}{\sqrt{kr}}$$

The scattering amplitude f(k) is a dimension-less quantity that characterizes the scattering process

Scattering cross-section (length): $|f(k)|^2/4k$

 $f(k) \sim rac{4\pi}{-2\ln(ka_{2D})+i\pi}$ when k
ightarrow 0

no Born approximation for low energy scattering in 2D

How a 3D pseudopotential is transformed in 2D

Petrov-Holzmann-Shlyapnikov

a is the 3D scattering length associated to the 3D pseudopotential

$$f(k) \sim \frac{4\pi}{-2\ln(ka_2) + i\pi}$$
with $a_2 \simeq \ell_z \exp\left(-\sqrt{\frac{\pi}{2}}\frac{\ell_z}{a}\right)$
(real life: $\ell_z > R_e$)

 $a_{\rm 2}$ is always positive: there is always a bound state in the 2D problem, irrespective of the sign of the 3D scattering length a

The relevant amplitude for experimentaly trapped 2D atomic gases $\frac{\hbar^2 k^2}{m} \sim \mu \qquad \qquad f(k) \simeq \sqrt{8\pi} \frac{a}{\ell_z} \sim 0.01 \text{ to } 0.15$ $\ell_z \gg a > 0$

How a 3D pseudopotential is transformed in 2D (II) ?

The 3D interaction energy:

ŧ

$$E_{\text{int}} = \frac{N(N-1)}{2} g^{(3D)} \int |\psi(\vec{r})|^4 d^3r \qquad g^{(3D)} = \frac{4\pi\hbar^2 a}{m}$$

The result $f(k) \simeq \sqrt{8\pi} \frac{a}{\ell_z}$ can be recovered simply by taking the 3D energy with trial wave functions $\psi(x, y, z) = \Phi(x, y) \frac{e^{-z^2/2\ell_z^2}}{(\pi \ell_z^2)^{1/4}}$

$$E_{\text{int}} = \frac{N(N-1)}{2} g^{(2D)} \int |\Phi(\vec{r})|^4 d^2r$$
with $g^{(2D)} = \frac{\hbar^2}{m} \sqrt{8\pi} \frac{a}{\ell_z}$

The role of (weak) interactions on BEC in a 3D trap

The simple shift due to mean field:

Repulsive interactions slightly decrease the central density, for given N and T

For an ideal gas, the central density at the condensation point is

$$N = 1.2 \left(\frac{k_B T}{\hbar \omega}\right)^3 \iff n(0)\lambda^3 = 2.6 \quad \text{(semi-classical)}$$

For a gas with repulsive interactions, one needs to put a bit more atoms to obtain the proper n(0)

Mean-field analysis: start from $n(r) \lambda^3 = g_{3/2} \left(e^{(\mu - V_{\text{trap}}(r))/kT} \right)$

$$V_{\text{trap}}(r) \longrightarrow V_{\text{eff}}(r) = V_{\text{trap}}(r) + 2g^{(3D)}n(r)$$

Note: In addition there is a shift of Tc due to complex non-mean field effects

The role of (weak) interactions on BEC in a 2D trap

The procedure similar to the 3D mean field analysis fails. Indeed,

$$N = 1.6 \left(\frac{k_B T}{h\omega}\right)^2 \iff n(0)\lambda^2 = \infty$$

where $n(r) = \int \rho(r, p) \frac{d^2 p}{h^2} \qquad \rho(r, p) = \left[e^{\beta(\frac{p^2}{2m} + \frac{m\omega^2 r^2}{2})} - 1\right]^{-1}$

One cannot make a perturbative treatment of interactions around this point!

Repulsive interactions tend to reduce the density, which cannot be infinite anymore at the center of the trap

2.

The superfluidity in a 2D Bose fluid and the BKT mechanism

Problem with 2D BEC in a harmonic trap (continued)

Treat the interactions at the mean field level: $V_{\text{eff}}(r) = \frac{m\omega^2 r^2}{2} + 2gn_{\text{mf}}(r)$

where the mean field density is obtained from the self-consistent equation

$$n_{\rm mf}(r)\lambda^2 = -\ln\left(1 - e^{(\mu - V_{\rm eff}(r))/kT}\right)$$

Two remarkable results

- One can accommodate an arbitrarily large atom number.
 Badhuri et al
- The effective frequency deduced from $V_{\rm eff}(r) \simeq m \omega_{\rm eff}^2 r^2/2$ tends to zero when $\mu \to 2g n_{\rm mf}(0)$ Holzmann et al.

Similar to a 2D gas in a flat potential...

However there is more than just (no) BEC in a 2D interacting gas...

Existence of a phase transition in a 2D Bose fluid

Berezinski and Kosterlitz –Thouless 1971-73 Nelson Kosterlitz 1977

The KT mechanism for pedestrians

Probability for a vortex to appear as a thermal excitation?

One has to calculate the vortex free energy E-TS and compare it with kT

$$\psi(\vec{r}) \propto e^{i\theta} \quad \xi \qquad \qquad v = \frac{\hbar}{mr} \qquad n_s = \frac{N}{\pi R^2}$$

Energy:
$$E = \int n_s \frac{mv^2}{2} 2\pi r \, dr \qquad \sim \frac{\pi\hbar^2}{m} n_s \log(R/\xi)$$

Entropy: $S = k \log(W) \sim k \ln(R^2/\xi^2) = 2k \log(R/\xi)$

Free energy of a vortex:

$$\frac{E-TS}{kT} \sim \frac{1}{2} \left(n_s \lambda^2 - 4 \right) \ln(R/\xi)$$

BKT transition for pedestrians (2)

Free energy of a vortex:
$$\frac{E-TS}{kT} \sim \frac{1}{2} \left(n_s \lambda^2 - 4 \right) \ln(R/\xi)$$

Thermodynamic limit in 2D: $R \to +\infty$ $\rho^{(2D)} = Ct$.

no free vortex

 $n_s \lambda^2 > 4$

0

$$n_s \lambda^2 < 4$$
 T

proliferation of free vortice

Superfluidity in 2 dimensions

A 2D film of helium becomes superfluid at sufficiently low temperature (Bishop and Reppy, 1978)

"universal" jump to zero of superfluid density at $T = T_c$

$$\rho_s(T_c)\lambda^2 = 4 \longrightarrow \rho_s = 0$$

Also Safonov et al, 1998: variation of the recombination rate in a H film

When does the Kosterlitz-Thouless transition occurs?

The result $n_{superfluid}\lambda^2 = 4$ is only a partial answer, because $n_{superfluid}$ is a quantity that depends on temperature and it is usually unknown.

Analytical calculation by Fisher & Hohenberg, Monte-Carlo by Prokof'ev et al

$$n_{\text{total}}\lambda^2 = \ln\left(\frac{C}{\bar{g}}\right) \qquad \begin{array}{c} C = 380 \pm 3\\ \bar{g} = \frac{mg^{(2D)}}{\hbar^2} & \text{dimensionless}\\ \text{interaction strength} \end{array}$$

For our setup with Rb cold atoms:

$$\bar{g} = 0.13$$
 \longrightarrow $n_{\rm t}$

 $\lambda_{\rm total} \lambda^2 \simeq 8.0$

This is not "universal" by contrast to the 3D result $~n_{
m total}\lambda^3\simeq 2.6$

▶ X

imaging

laser

80 160 x (µm) Waist of the lasers along x: 120 µm We vary the temperature between 50 and 100 nK (2 to « a few » planes) Tunnelling between planes is negligible. However adjacent sites may exchange

0

2D character of the gas: at center $\omega_z/(2\pi) = 3 \text{ kHz}$ $\hbar\omega_z > kT$. μ

particles from the high energy tail of the distribution. This equalizes T and μ

Overlap between expanding planar gases

Transition in a planar atomic gas

Within our accuracy, onset of bimodality and interference agree

Variation of the critical atom number with T

Stoof et al., Mullin et al., Simula-Blackie, Hutchinson et al.

Polkovnikov-Altman-Demler

Can it be the Kosterlitz-Thouless transition point?

For a uniform system with our interaction strength, the KT transition is expected to occur for

$$n_{\text{total}}\lambda^2 \simeq 8.0$$

Local density approximation + gaussian density profile (as seen experimentally)

$$n_{\text{total}}(0)\lambda^2 = 8.0$$
 $n(\vec{r}) = n(0) e^{-V(\vec{r})/kT}$

$$N_{\rm C, \ KT} = 4.9 \ N_{\rm C, \ idea}$$

This factor 4.9 has to be compared with the experimental factor 5.3: not bad...

The superfluid phase investigated using matter-wave interferometry

Time of

flight

sometimes: dislocations!

* Research unit of CNRS. ENS. and UPMC

ENS Paris

Same physics as charged particles in a magnetic field + harmonic confinement

Nucleation of vortices: a simulation using Gross-Pitaevskii equation

C. Lobo, A. Sinatra, Y. Castin, Phys. Rev. Lett. **92**, 020403 (2004) After

time-of-flight

expansion:

The single vortex case

Questions which have been answered: • Total angular momentum $N\hbar$ (i.e. \hbar per particle) ? • Is the phase pattern varying as $e^{i\theta}$? • What is the shape of the vortex line? · Can this line be excited (as a guitar string)? Kelvin mode The fast rotation regime $\Omega \sim \omega$ The centrifugal force nearly balances the trapping force. The radius of the gas increases and the density ρ drops. The vortex core $\xi = \frac{1}{\sqrt{8\pi\rho a}}$ increases to infinity ??? \implies The vortex spacing $n_v^{-1/2} \propto \Omega^{-1/2}$ decreases Are there still vortices? - *cf.* H_{c2} field for a superconductor? Do they still form a regular lattice?

The intermediate rotation regime

The number of vortices is notably larger than 1.

However one keeps the rotation frequency Ω notably below ω

core size ξ << vortex spacing

Uniform surface density of vortices n_{ν} with

$$\Omega = \frac{\pi\hbar}{m} n_v$$

$$\vec{v} = \vec{\Omega} \times \vec{r}$$

