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Lecture 1
Quantum description of elastic collisions 
between ultracold atoms

The basic ingredients for a mean-field description of 
gaseous Bose Einstein condensates

Lecture 2
Quantum theory of Feshbach resonances

How to manipulate atom-atom interactions in a 
quantum ultracold gas
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Outline of lecture 2
1 - Introduction
2 - Collision channels

• Spin degrees of freedom. 
• Coupled channel equations
• Strong couplings and weak couplings between channels

3 - Qualitative interpretation of Feshbach resonances
4 - Two-channel model

• Two-channel Hamiltonian
• What we want to calculate

5 - Scattering states of the 2-channel Hamiltonian
• Calculation of the outgoing scattering states
• Asymptotic behavior. Scattering length
• Feshbach resonance

5 - Bound states of the 2-channel Hamiltonian
• Calculation of the energy of the bound state
• Calculation of the wave function
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Feshbach Resonances
Importance of Feshbach resonances

Give the possibility to manipulate the interactions between ultracold 
atoms, just by sweeping a static magnetic field

- Possibility to change from a repulsive gas to an attractive one and
vice versa

- Possibility to turn off the interactions → perfect gas
- Possibility to study a regime of strong interactions and correlations
- Possibility to associate pairs of ultracold atoms into molecules and
vice versa

Example of a recent breakthrough using Feshbach resonances (MIT)
Investigation of the BEC-BCS crossover

Ultracold atoms with interactions manipulated by Feshbach 
resonances become a very attractive system for getting a better 
understanding of quantum many body systems
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Purpose of this lecture

- Provide a physical interpretation of Feshbach resonances in terms 
of a resonant coupling of the state of a colliding pair of atoms to a
metastable bound state belonging to another collision channel

- Present a simple two-channel model allowing one to get analytical
predictions for the scattering states and the bound states of the
two colliding atoms near a Feshbach resonance
• How does the scattering length behave near a resonance?
• When can we expect broad resonances or narrow resonances?
• Are there bound states near the resonances? What are their binding
energies and wave functions?

- In addition to their interest for ultracold atoms, Feshbach resonances
are a very interesting example of resonant effect in collision processes
deserving to be studied for themselves
This lecture will closely follow the presentation of Ref.9:
T.Köhler, K.Goral, P.Julienne, Rev.Mod.Phys. 78, 1311-1361 (2006)
See also the references therein
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Microscopic atom-atom interactions
Case of two identical alkali atoms

1 2
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Unpaired electrons for each atom with spins 
Nuclear spins 
Hyperfine states f f
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Microscopic atom-atom interactions  (continued)
Electronic interactions

1 22

1 3 1
4 4 2

el() () ()

() () () ().

S S T T

S T T S

V r V r P V r P

V r V r V r V r S S

= +

⎡ ⎤= + + −⎣ ⎦

This interaction depends on the electronic spins because of Pauli 
principle (electrostatic interaction between antisymmetrized states).
It is called also “exchange interaction”
Does not depend on the orientation in space of the molecular axis 
(line joining the nuclei of the 2 atoms)

(2.2)

Magnetic spin-spin interactions Vss
Dipole-dipole interactions between the 2 electronic spin magnetic 
moments. Depends on the orientation in space of the molecular axis 

Interaction Hamiltonian
int

el= + ssVVV
Vel is much larger than Vss

(2.3)
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Channels
Two atoms entering a collision in a s-wave ( = 0) and in well defined 
hyperfine and Zeeman states. This defines the “entrance channel” α
defined by the set of quantum numbers: 

{ }1 1 2 2 0: ,,,,f ff m f mα =

The eigenstates of the total Hamiltonian with eigenvalues E can be 
written:

()rα
α

ψ α ψ= ∑
where ψα(r) is the wave function in channel α whose radial part is of 
the form: 

(,)F r E
r

α

Because the interaction has off diagonal elements between different 
channels, the Fα do not evolve independently from each other

(2.4)
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Coupled channel equations
The coupled equations of motion of the Fα are of the form:

1 2 2

2

2 2

2

2

2 0

1
2

int
, ,

(,) (,)

( )
()

i f ff m f m

F r E E V F r E
r

V E E V r
r

α αβ αβ β
β

αβ αβ αβ

μ δ

δ
μ

∂ ⎡ ⎤+ − =⎣ ⎦∂
⎡ ⎤+

= + + +⎢ ⎥
⎣ ⎦

∑ (2.5)

(2.6)

Solving numerically these coupled differential equations gives the 
asymptotic behavior of Fα for large r from which one can determine 
the phase shift δ0 and the scattering length in channel α. 

Importance of symmetry considerations
The symmetries of Vel(r) and Vss determine if 2 channels can be 
coupled by the interaction. In particular, if 2 channels can be 
coupled by Vel, the Feshbach resonance which can appear due to 
this coupling will be broad because Vel is large. If the symmetries 
are such that only Vss can couple the 2 channels, the Feshbach 
resonance will be narrow.
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Examples of symmetry considerations
If the magnetic field B0 is the only external field, the projection M of 
the total angular momentum along the z-axis of B0 is conserved.

1 2f fM m m m= + +

1 2f fm m m+ +Only states with the same value of can be coupled 
by the interaction Hamiltonian

ssV V r
L

≠
el

The s-wave entrance channel can be coupled to 0 channels only 
by  because , which depends only on the distance between the
2 atoms, commutes with the molecule orbital angular momentum   

{ }

1 2
2

1 2 1 2

1 2

Consider the various states   with a fixed value of
 They can be also classified by the eigenvalues of where

 This gives the states with 
Since 

. ,,

. ,,,,

.

f f

z

F F

M m m m
M F F
F F F f f F M m M m M

S S

= + +

= + + =

1 2 1 2el

el

 and thus  commutes with and 
 can couple only states with the same value of  and 

, , ,V F S S I I L
V F

= + + +

Examples of application of these symmetry considerations to the 
identification of broad Feshbach resonances will be give later on
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Closed 
channel

Open 
channel

E

r

V

0

Open channel and closed channel

The 2 atoms collide with a very 
small positive energy E in an 
channel which is called “open”
The energy of the dissociation 
threshold of the open channel is 
taken as the zero of energy
There is another channel above 
the open channel where 
scattering states with energy E 
cannot exist because E is below 
the dissociation threshold of this 
channel which is called “closed”

There is a bound state in the 
closed channel whose energy 
Eres is close to the collision 
energy E in the open channel

Eres
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Physical mechanism of  the Feshbach resonance

The incoming state with energy E of the 2 colliding atoms in the
open channel is coupled by the interaction to the bound state ϕres in 
the closed channel. 
The pair of colliding atoms can make a virtual transition to the
bound state and come back to the colliding state. The duration of 
this virtual transition scales as ħ / I Eres-E I, i.e. as the inverse of the 
detuning between the collision energy E and the energy Eres of the 
bound state.
When E is close to Eres, the virtual transition can last a very long 
time and this enhances the scattering amplitude
Analogy with resonant light scattering when an impinging photon of 
energy hν can be absorbed by an atom which is brought to an 
excited discrete state with an energy hν0 above the initial atomic 
state and then reemitted. There is a resonance in the scattering
amplitude when ν is close to ν0
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Closed 
channel

Open 
channel

E

r

V

0

Sweeping the Feshbach resonance
The total magnetic moment of the atoms are not the same in the 2
channels (different spin configurations). The energy difference between 
the 2 channels can thus be varied by sweeping a magnetic field 
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Shape resonances
2 21 2()( )/V r rμ+ +

r0

Incoming 
state

Metastable 
state

Can appear in a ≠0 channel 
where the sum of the potential 
and the centrifugal barrier gives 
rise to a potential well

The 2 colliding atoms arrive in 
a state with positive energy

In the potential well, there are quasi-bound states with positive energy 
which can decay by tunnel effect through the potential barrier due to 
the centrifugal potential. This is why they are metastable
If the energy of the incoming state is close to the energy of the 
metastable state, there is a resonance in the scattering amplitude
These resonances are different from the zero-energy resonances 
studied in this lecture. They explain how scattering in ≠0 waves can 
become as important as s-wave scattering at low temperatures
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Two-channel model

op
2-channel

cl

()

()

H W r
H

W r H

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

2

2
2

2

op op

cl cl

H V

H V

μ

μ

= − Δ +

= − Δ +

op clop cl() ()r rϕ ϕ+

Only two channels are considered, one open and one closed
State of the atomic system

The wave function has two components, one in each channel

Hamiltonian

Resonant bound state in the closed channel

cl res res res res() ()H r E r Eϕ ϕ= = Δ

,
0

E
E

ΔresThe energy  of this state, denoted also is close to the energy
of the colliding atoms in the open channel

(2.7)

(2.9)(2.8)

(2.10)
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What we want to calculate
We want to calculate the eigenstates and eigenvalues of H2-channel

op op cl op

op cl cl cl

() ()() ()

()() () ()

H r W r r E r

W r r H r E r

ϕ ϕ ϕ

ϕ ϕ ϕ

+ =

+ =

op op op

cl cl cl

()

()

H W r
E

W r H

ϕ ϕ

ϕ ϕ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Eigenstates with positive eigenvalues E>0
They describe the scattering states of the 2 atoms in the presence 
of the coupling W. In particular, we are interested in the behavior of 
the scattering length when Eres is swept around 0

op cl

The 2 components of the scattering state corresponding to an 
incoming wave  are denoted  and k kk ϕ ϕ

Eigenstates with negative eigenvalues Eb<0
They describe the bound states of the 2 atoms in the presence of W

op clTheir 2 components  are denoted  and b bϕ ϕ

(2.11)

(2.12)
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Single resonance approximation

We will neglect all eigenstates of Hcl other than ϕres
Near the resonance we want to study (Eres close to 0), they are too 
far from E=0 and their contribution is negligible

We will use the following expression for the Hamiltonian of the 
closed channel

cl res res resH E ϕ ϕ=

1

cl

res res
cl

cl res

The resolvent operator (or Green function) of  will be thus 
given by:

 ()

H

G z
z H z E

ϕ ϕ
= =

− −
(2.14)

(2.13)
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Scattering states of the 
two-channel Hamiltonian H2-channel

( )op op cl() ()()k kE H r W r rϕ ϕ− =

1
op op cl op

op

() ()k k
k G E W G E

E H i
ϕ ϕ ϕ

ε
+ + += + =

− +

2

3 2

1 1
22 ope .

/
() ()

( )

i k r
k k

pr V r T
E T i

ϕ ϕ
ε μπ

+ +⎡ ⎤
= + =⎢ ⎥− +⎣ ⎦

Open channel component of the scattering state of H2-channel

The first equation (2.12) can be written

Its solution is the sum of a solution of the equation without the right-
side member and a solution of the full equation with the right-side 
member considered as a source term.

In (2.16), G+
op(E) is a Green function of Hop. The term +iε, where ε is 

a positive number tending to 0, insures that the second term of (2.16) 
has the asymptotic behavior of an outgoing scattered state for r→∝.
The first term of (2.16), involving only Hop, is chosen as an outgoing 
scattering state of Hop, in order to get the good behavior for r→∝.

(2.15)

(2.16)

(2.17)
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Scattering states of the 
two-channel Hamiltonian H2-channel (continued)

Closed channel component of the scattering state of H2-channel

( )cl cl op() () ()
k kE H r W r rϕ ϕ− =

( ) 1

cl cl op cl cl() ()k kG E W G E E Hϕ ϕ
−

= = −

Its solution can be written in terms of the Green function of Hcl:

The second equation (2.12) can be written:

Using the single resonance approximation (2.14), we get:

res op
cl res

res

() ()

k

k
W

r r
E E

ϕ ϕ
ϕ ϕ=

−

cl resThe closed channel component  is thus proportional to kϕ ϕ
Dressed states and bare states

2op cl channel

res op cl

The 2 components and of the scattering states of 
are called dressed states because they include the effect of 
The eigenstates and of and  are called bare states

.

k k

k

H
W

H H

ϕ ϕ

ϕ ϕ

−

+

(2.18)

(2.19)

(2.20)
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Open channel components of the scattering 
states of H2-channel in terms of bare states

Inserting (2.20) into (2.16), we get:
res op

op op res
res

()

k

k
k

W
G E W

E E

ϕ ϕ
ϕ ϕ ϕ+ += +

−

res op res

res res res op res()

k
k

W W

E E E E W G E W

ϕ ϕ ϕ ϕ

ϕ ϕ

+

+
=

− − −

Inserting (2.22) into (2.21), we finally get:

op

res

In order to eliminate  in the right side, we multiply both sides of
(2.21) by  which gives:,

k

W
ϕ

ϕ

res res
op op

res res op res

()
()

k
k k

W W
G E

E E W G E W

ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
+ + +

+
= +

− −

Only the bare states appear in the right side of (2.23).

(2.21)

(2.22)

(2.23)
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Connection with two-potential scattering
Equation (2.23) can be rewritten in a more suggestive way. Il we
introduce the effective coupling Veff defined by:

res res
eff

res res op res()
V W W

E E W G E W

ϕ ϕ

ϕ ϕ+
=

− −

we get, by inserting (2.24) into (2.23):
1

op eff
op

k
k kV

E H i
ϕ ϕ ϕ

ε
+ += +

− +
Veff acts only, like Vop, inside the open channel space. It describes the 
effect of virtual transitions to the closed channel subspace. The two-
channel scattering problem can thus be reformulated in terms of a 
single-channel scattering problem (in the open channel), but with a 
new potential Vtot in this channel, which is the sum of 2 potentials

tot op effV V V= +

Equation (2.25) then appears as the scattering produced by Veff on 
waves “distorted” by Vop. (Generalized Lippmann-Schwinger equation)

(see for example ref.4, Chapter 17) 

(2.26)

(2.24)

(2.25)
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Asymptotic behavior 
of the scattering states of H2-channel

Let us come back to (2.23). Only the asymptotic behavior of the 
open channel component is interesting because the closed channel
component, proportional to ϕres vanishes for large r.

opWe expect the asymptotic behavior of to be of the form:kϕ

3 2

1
2op

ee .

/
() (,) /

()

i k r
k i k r

r
r f k n n r r

r
ϕ

π→∞

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦

0
(,)

k
f k n a

→
→ −

op bga a=

In the limit k→0, the scattering amplitude becomes spherically 
symmetric and gives the scattering length we want to calculate

The asymptotic behavior of the first term of (2.23) describes the 
scattering in the open channel without coupling to the closed channel. 

0)
.

opIt gives the scattering length in the open channel alone ( .
This scattering length is often called the background scattering length

=a W

(2.28)

(2.27)

(2.29)
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Position of the resonance
The second term of (2.23) is the most interesting since it gives the 
effects due to the coupling W.
The scattering amplitude given by its asymptotic behavior becomes 
large if the denominator of the second term of (2.23) vanishes, i.e. if:

res res op res()E E W G E Wϕ ϕ+= +

When E is close to 0, the last term of (2.30) is equal to:
2

00
res

res op res()
k

k k

W
W G W

E i

ϕ ϕ
ϕ ϕ

ε

+

+ = = Δ
− +∑

0res resE E= + Δ

Its interpretation is clear. It gives the shift ħΔ0 of ϕres due to the second 
order coupling induced by W between ϕres and the continuum of Hop
We thus predict that the scattering amplitude, and then the scattering 
length, will be maximum (in absolute value), not when Eres is close to 
0, but when the shifted energy of ϕres

(2.31)

(2.32)

is close to the energy E 0 of the incoming state

(2.30)
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Remark
( ) 1

opStrictly speaking, the Green function 
appearing in (2.30) is equal to:

() kG E E E i ε
−+ = − +

( )1 1
k

k k

i E E
E E i E E

π δ
ε

⎛ ⎞
= − −⎜ ⎟⎜ ⎟− + −⎝ ⎠
P

where P means principal part.

Because of the last term of (2.33), equation (2.31) should also 
contain an imaginary term describing the damping of ϕres due to its 
coupling induced by W with the continuum of Hop.

0

0
op

res

But we are considering here the limit of ultracold collisions 
and the density of states of the continuum of vanishes near

which means that the damping of  can be ignored in 
the limit 

,k

E
H

E
E

ϕ

→

=
→ 0.

For large values of Eres, the imaginary term of (2.33) can no longer 
be ignored, and it can be shown that it gives rise to an imaginary 
term in the scattering amplitude, proportional to k.

(2.33)
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E E Bres resVariations of and with 
The spin configurations of the two channels have different magnetic 
moments. The energies of the states in these channels vary 
differently when a static magnetic field B is applied and scanned. If 
ξ is the difference of magnetic moments in the 2 channels, the 
difference between the energies of 2 states belonging to the 
channels varies linearly with B with a slope ξ.
If we take  the energy of the dissociation threshold of the open
channel as the zero of energy, the energy Eres of ϕres is equal to:

( )res resE B Bξ= −

Eres is degenerate with the energy of the ultracold collision state 
when B=Bres

( )0res res 0E E B Bξ= + Δ = −

This equation gives the correct value, B0, at which we expect a 
divergence of the scattering length.

(2.35)

,res res

In fact, the position of the Feshbach resonance is given, not by
the zero of but by the zero of E E

(2.34)
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B

E

resB0B

resE

resE

0Δ

We suppose here ξ < 0
Since Δ0 is also negative according to (2.31), B0 is smaller than Bres.
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Contribution of the inter channel coupling W 
to the scattering length

Using (2.30) and (2.32), we can rewrite (when E 0) equation (2.23):

res res
op op

res

()k
k k

W W
G E

E E
ϕ ϕ

ϕ ϕ ϕ+ + += +
−

To find the contribution of W to the scattering length, we have to find 
the asymptotic behavior for r large of the wave function of the last term 

3

res res
op

res

res res
op

res

d

()

()

k

k

W W
r G E

E E
W W

r r G E r r
E E

ϕ ϕ
ϕ

ϕ ϕ
ϕ

+ +

+ +

=
−

′ ′ ′
−∫

We need for that to know the asymptotic behavior for r large of the 
Green function of Hop

( ) 1+
op

op

,,G E r r r r
E H i ε

′ ′=
− +

kϕopAsymptotic behavior of the W-dependent term of 

(2.36)

(2.37)

(2.38)
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Contribution of the inter channel coupling W 
to the scattering length (continued)

One can show (see Appendix) that:

( ) ( )2

2
2

+
op

e *

,, /
i k r

k nr
G E r r r n r r

r
μ π ϕ−

→∞
⎡ ⎤′ ′− =⎣ ⎦

( )Using  and the closure relation for , we get
for the asymptotic behavior of (2.37 ):

ϕ ϕ− −⎡ ′ ⎤ ′ ′=⎣ ⎦
*

k n k nr r r

2
2

2 2 res res

res

e ϕ ϕ ϕ ϕμ π
− +

−
−

i k r

k n kW W

r E E

0 0 00 0
1

In the limit and  since 
e so that (2.40 ) can be also written, using (2.35 ):

, ,

/ /
k nk

i kr

k E
r r

ϕ ϕ ϕ ϕ ϕ+ + − − +

±

→ → → → =
→

( )

2 2

0 02 2
2 2

0

1 2 1 22 2
0

res res

res

ϕ ϕ ϕ ϕμ μπ π
ξ

+ +

− = +
− −

W W

r rE B B

(2.39)

The coefficient of -1/r in (2.41) gives the contribution of the inter-
channel coupling to the scattering length

(2.40)

(2.41)
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Scattering length
The asymptotic behavior of the first term of (2.23) gives the background 
scattering length. Adding the contribution of the second term we have 
just calculated, we get for the total scattering length:

( )

2

02
2

00

2 2 1
res

bg bg

ϕ ϕμ π
ξ

+
⎡ ⎤Δ

= − = −⎢ ⎥−− − ⎣ ⎦

W Ba a a
B BB B

where: 2

02
2

2 2
res

bg

ϕ ϕμ π
ξ

+

Δ =
W

B
a

(2.42)

This is the main result of this lecture. 
- The scattering length diverges when B = B0
- It changes sign when B is scanned around B0
- It vanishes for B – B0 = ΔB

The variations of the scattering length with the static field are 
represented in the next figure

(2.43)
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a

BΔ

0B resB B0
bga

Scattering length versus magnetic field 

85

2, -2 ( 0).
0 0bg

Figure corresponding to two colliding atoms each in the state
in a s-wave 

In this case, we have and 
f

Rb
f m

a ξ
= = =

< <
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Examples of broad and narrow Feshbach resonances

- Entrance channel : ee
1 1 2 2

1 2

2 2 2 2 0
4

= = − = = − = =
= + + = −

, , , ,f f

f f

f m f m m
M m m m

- Other channels with the same
4 0M m= − = =

gg, fh eg,df
They are open because they are
above the entrance channel. 
They have the same negative slope ξ
with respect to ee when B is varied

Zeeman and hyperfine levels of Rb85

(Figure taken from Ref.9)

Classification by other quantum numbers 1 2 1 20= = = +( , ) , , ( )f f F M m F f f

1 2

22 4 4
2 0 2 4

4 4
If  (Odd values of are forbidden for identical boso

Channel ee 
ns)

Only corresp can give onds t o = = −
=

= − ⇒
= =

=
, ,

( ,
,

),
f f F F

F M F M

1 2 3 0 2 4 6

33 4 4 33
4

6 4
6 4

If  (Odd values of are forbidden for identical bosons)
Only can giv Channel gg and fh give rise to 2 types of
states  and   

e 
= = =

= = − = = −
− ⇒= =

( )

, , , ,
,

, , ( ), ,

f f

F

F

M
F

M
M

F

F
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Feshbach resonances associated with gg and fh

(Figure taken from Ref.9 )

In the potential wells of the channels
(33) F = 6 or 4, M = - 4, there are 
vibrational levels v = -1,-2,-3,…
staring from the highest one v = -1
The energy level 

(33) F = 4, M= - 4,v = -3
crosses the energy (~0) of the 
entrance channel around B=155 G
The energy level 

(33) F = 6, M= - 4,v = -3
crosses E~0) around B=250 G

(Lower part of the figure)

The 2 levels which cross at B=155 G correspond to the same value of F
and can thus be coupled by the strong interaction Vel . This is why the 
corresponding Feshbach resonance is broad
The 2 levels which cross at B=250 G correspond to different values of F
and can thus be coupled only by the weak  interaction Vss . This is why the 
corresponding Feshbach resonance is narrow

(Upper part of the figure)
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Outline of lecture 2
1 - Introduction
2 - Collision channels

• Spin degrees of freedom. 
• Coupled channel equations
• Strong couplings and weak couplings between channels

3 - Qualitative interpretation of Feshbach resonances
4 - Two-channel model

• Two-channel Hamiltonian
• What we want to calculate

5 - Scattering states of the 2-channel Hamiltonian
• Calculation of the outgoing scattering states
• Asymptotic behavior. Scattering length
• Feshbach resonance

5 - Bound states of the 2-channel Hamiltonian
• Calculation of the energy of the bound state
• Calculation of the wave function
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Bound states of the two-channel 
Hamiltonian H2-channel

Are there bound states for H2-channel for B close to B0?
How are they related to the bound state ϕres of Hcl?
How do their energy Eb and wave function vary with B?
We denote such a bound state

b
op clop cl() ()br rϕ ϕ+

b b
op op cl op

b
op cl cl cl

() ()() ()

()() () ()

b
b

b b
b

H r W r r E r
W r r H r E r

ϕ ϕ ϕ
ϕ ϕ ϕ

+ =

+ =

1b b
op op cl cl

b bϕ ϕ ϕ ϕ+ =

op cland  are the components of the bound state in the open 
channel and the closed channel, respectively, obeying the 
normalization condition:

b bϕ ϕ

(2.44)

(2.45)

Expressing that the state (2.44) is an eigenstate of the Hamiltonian 
(2.8) with eigenvalue Eb, we get the following 2 equations:

(2.46)
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Bound states of the two-channel 
Hamiltonian H2-channel (continued)

(2.47)

(2.48)

(2.50)

To solve equation (2.46), we can use the Green functions of Hop and Hcl
without the iε term because Eb is negative (below the threshold of Vop)

b
op op cl

b
cl cl op

()

()

b
b

b
b

G E W

G E W

ϕ ϕ

ϕ ϕ

=

=

res res
cl

res

()b
b

G E
E E
ϕ ϕ

=
−

As above, we can use the single resonance approximation for Gcl:

cl

res

Inserting (2.48) into the second equation (2.47) shows that is
proportional to so that we can write:,

bϕ
ϕ

(2.49)
1b

op resop

rescl

()b

b
b

G E W

N

ϕϕ

ϕϕ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

21 res op res()b bN W G E Wϕ ϕ= +

where Nb is a normalization factor
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Implicit equation for the energy Eb

(2.51)

(2.53)

(2.54)

(2.52)

Inserting (2.48) into the second equation (2.47) gives:
1 b

cl res res op
res

b

b

W
E E

ϕ ϕ ϕ ϕ=
−

1b b
op op res res op

res

()b
b

G E W W
E E

ϕ ϕ ϕ ϕ=
−

res res op res()b bE E W G E Wϕ ϕ− =

which, inserted into the first equation (2.47) leads to:

op

res

As for equation (2.21), we can eliminate the dressed state by
multiplying both sides of this equation at left by  This gives:.

b

W
ϕ

ϕ

Now, using the identity
1 1 1 1

op
op op op op

()b b
b b

G E E
E H H H E H

= = − +
− −

we can rewrite (2.53) as:

0 0res res op res res op op res)() ()()b b bE E WG W E WG G E Wϕ ϕ ϕ ϕ= + −

(2.55)



42

Implicit equation for the energy Eb (continued)

(2.56)

(2.58)

(2.57)

0 res

res res

The second term of the right side of (2.55) is the shift of 
Adding it to we get  so that (2.55) can be rewritten:

.

, ,E E
ϕΔ

0b res res op op res()()b bE E E W G G E Wϕ ϕ= −

3
2 2 2

b
op opd() ()

/

k kG z k G z
z k

ϕ ϕ

μ

+ +

= +
−∫

( ) ( )

2

2

2 2 2 2
2

2
res3

res d k
b b

b

W
E E E k

k k E

ϕ ϕ
μ

μ

+

= −
+∫

0op

The last term of (2.57) gives the contribution of the bound states of
Se suppose here that their energy if far below so that we 

can ignore this term. Using (2.57), we can then write (2.56) as:
. ,H E =

This is an implicit equation for Eb that we will try now to solve

To go further, we introduce the spectral decomposition of Gop(z)
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(2.59)

Calculation of the energy Eb

To calculate the integral of (2.58), we introduce the new variable:

2 b

ku
Eμ

=

which allows one to rewrite, after angular integration, the integral of 
(2.58) as:

( )

2

3 20

1 4
12

res k

b

W
du

uE

ϕ ϕπ

μ

+
∞

+∫
2

0

0

0
0

2

resLet  be the width of  considered as a function of 
This defines a value of 

characterizing the width in of the numerator of the integral of (2.60).
Two different limits can th

.k

b

k W k
u u

k
u

E
u

ϕ ϕ

μ

+

=

0 0 1en be considered: 1 and  ?u u

(2.60)

(2.61)
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(2.62)

Calculation of the energy Eb (continued)

(2.63)

(2.64)

First limit 2 2
0 01 2/bu E k μ⇔

0
The denominator of the integral of (2.60) varies more rapidly with 
than the numerator which can be replaces by its value for =

u
k

Equation (2.60) can then be approximated by:
2

03 20

2

1 4
12

res

/
b

duW
uE
π

π ϕ ϕ
μ

∞+

=

+∫

( )3 22
2

03

2 2
res res

/

b bE E E W
π μ

ϕ ϕ+= +

2

22bE
aμ

= −

Replacing the integral of (2.58) by (2.62) then leads to: 

2

0

0

res

res

One can then reexpress in terms of thanks to 
(2.43) and in terms of  thanks to (2.35) and finally use
(2.43) to show that the solution of (2.6 ) is, to a good approximation:

( )

W B
E B B

ϕ ϕ
ξ

+ Δ

−
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(2.65)

Calculation of the energy Eb (continued)
Second limit 2 2

0 01 2/bu E k μ⇔

2

2 2

The numerator of the integral of (2.60) varies more rapidly with 
than the denominator,  so that we can neglect the term  in the 
denominator.
In fact, this approximation amounts to neglecting com

u
u

k
2

pared to
in the denominator of the integral of (2.58)bEμ

This approximation allows one to transform (2.58) into: 

( )

( )

2

2

2 2

2

2 2

0

2
2

2

res3
res

res3
res

res res res

d

d
/

k
b

k

W
E E k

k

W
E k

k
E E B B

ϕ ϕ
μ

μ

ϕ ϕ

μ
ξ

+

+

= +

= +

= − Δ = = −

∫

∫

We have used the expression (2.31) of ħΔ0 and equation (2.35)
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B

Eb

resB
0B

resE

resE

0Δ

Eb

- The bound state of H2-channel appears for B > B0, in the region a>0. 
- Eb first decreases quadratically with B-B0 and then tends to the unperturbed
energy Eres of the bound state ϕres of the closed channel

- If B0 is swept through the Feshbach resonance from the region a<0 to the
region a>0, a pair of ultracold atoms can be transformed into a molecule 

Asymptote
with a slope ξ
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Wave function of the bound state
Weight of the closed channel component of the bound state 

cl

2-channel

According to (2.49) and (2.50), the relative weight of  in the 
(normalized) wave function of   is given by:

ϕ b

H
2 2

2

1 1cl cl res op res()b b
b b

b

N W G E W
N

ϕ ϕ ϕ ϕ= = +

( )2

1 1 2
op op op

op op

() () ()b b b
b b

b

G E G E G E
E H E E H

∂
= ⇒ = − = −

− ∂ −

Using

we can rewrite the second equation (2.66) as:  
(2.67)

(2.66)

2 1 res op res()b b
b

N W G E W
E

ϕ ϕ∂
= −

∂

( )res

res res op res()b b

B B

E E W G E W
ξ

ϕ ϕ
= −

= +

(2.68)

The last term of (2.68) can be transformed using (2.53)

(2.69)
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Wave function of the bound state (continued)
Taking the derivative of (2.69) with respect to B, we get:

(2.70)

(2.71)

21

res op res()

b

b b
b

b

N

E E
W G E W

B E B
ξ ϕ ϕ

= −

∂ ∂∂
= +

∂ ∂ ∂

2

1 b

b

/E B
N ξ

∂ ∂
This finally gives:

=

The weight of the closed channel component in the wave function of 
the bound state, for a given value of B, is thus equal to the slope of 
the curve giving Eb(B) versus B, divided by the slope ξ of the 
asymptote of the curve giving Eb(B) versus B (see Figure page 46)
Conclusion

When the bound state of the 2-channel Hamiltonian appears near 
B=B0 in the region a > 0, the slope of the curve Eb(B) is equal to 0 
and the weight of the closed channel component in its wave function 
is negligible. For larger values of B, near the asymptote of Eb(B),
this weight tends to 1
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Wave function of the bound state (continued)
Expression of the wave function of the bound state 
The previous conclusion means that, near the Feshbach resonance,
the coupling with the closed channel can be neglected for calculating 
the wave function of the bound state and that we can thus look for 
the eigenfunction of Hop with an eigenvalue –ħ2/2μa2.

The asymptotic behavior of this wave function (at distances larger 
than the range of Vop) can be obtained by solving the 1D radial 
Schrödinger equation for u0(r) with Vop=0.

22 2
0

02 22 2
d

d
()

()
u r

u r
r aμ μ

− = −

The 3D wave function of the bound state thus behaves 
asymptotically as

exp(/)r a
r
−

(2.72)

(2.73)
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Comparison with quantitative calculations

Figure taken from Ref. 9

Note the logarithmic scale 
of the r-axis

When one gets closer to 
the Feshbach resonance, 
the extension of the wave 
function becomes bigger 
and the weight of the 
closed channel component 
smaller: 

4.7 %  at B=160 G
0.1 %  at B=155.5 G 
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Conclusion

The coupling between the collision state of 2 ultracold atoms and a 
bound state of these 2 atoms in another closed collision channel gives 
rise to resonant variations of the scattering length a when the energy 
of the bound state is varied around the threshold of the closed 
channel by sweeping a static magnetic field B.

The scattering length a diverges for the value B0 of B for which the 
energy of the bound state in the closed channel, perturbed by its 
coupling with the continuum of collision states in the open channel, 
coincides with the threshold of the open channel. 

The scattering length can thus take positive or negative values, very 
large values. It vanishes for a certain value of B depending on the 
background scattering length in the open channel.
By choosing the value of B, one can thus obtain an attractive gas, a 
repulsive one, a perfect gas without interactions (a=0), a gas with very 
strong interactions (a very large, corresponding to the unitary limit).
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Conclusion (continued)
The width of the resonance, given by the distance between the value 
of B for which a diverges and the value of B for which it vanishes, 
depends on the strength of the coupling between the 2 channels. The 
resonance is broad if the 2 channels are coupled by the spin 
exchange interaction, narrow if they can be coupled only by the 
magnetic dipole-dipole spin interactions. 
Near B=B0, in the region a>0, the two-atom system has a bound state, 
with a very weak binding energy, equal to ħ2/2μa2. The wave function 
of this bound state has a very large spatial extent of the order of a. Its 
closed channel component is negligible compared to the open 
channel component. 
By sweeping B near B0, one can transform a pair of colliding atoms 
into a molecule or vice versa.
A few problems not considered here:

- Influence of the speed at which B is scanned.
- Stability of the “Feshbach molecules”. How do inelastic and 3-body

collisions limit their lifetime. Bosonic versus fermionic molecules.
D.Petrov, C.Salomon, G.Shlyapnikov, Phys.Rev.Lett. 93, 090404 (2004)


