THE UNITARY GAS

OUTLINE:

I. Simple facts
II. How to model the interaction

III. Dynamical scaling invariance in a trap



I. SIMPLE FACTS



WHAT IS THE UNITARY GAS ?
A gas...

e a dilute system with respect to interaction range:

nb> < 1
e Scattering amplitude f; matters rather than V (r)

...at unitary limit:

e For relevant relative momentum k, fj reaches maximal
modulus: maximally interacting gas

f_1
k= ik

e From optical theorem indeed:

Im f, = k|fil° = fr. = —

—, u(k) real
u(k) + ik



WHAT THIS IMPLIES FOR AN ATOMIC GAS

S-wave low k expansion of scattering amplitude:
1 1
u(k) = = — —k’re¢ + ...
a 2
e a is scattering length
e r is effective range
e ... assumed negligible for kb < 1
Unitary gas as a double limit:
(1) zero range limit kb < 1, k|re| < 1
(2) infinite scattering length limit: k|a| > 1

o If one assumes k ~ nl/3 double limit achieved in present
experiments on broad Feshbach resonances (|re| ~ b).

e Assumption k ~ nl/3 not necessarily true (effective three-

body Efimov attraction, bosons or large mass ratio fermions)



CAN ONE HAVE r NON ZERO WITH b — 0

Yes, simple two-channel model of Feshbach resonance:

A exp(-k°b/2)

‘k1_k> ‘m0|>

e Tune E,,, to have |a| = oo

e Then effective range




WHY IS THE UNITARY GAS FASCINATING ?
Universality:

e no parameter left describing the interaction

e cigenenergies FE; depend on 12 /m and on shape of con-
tainer U (7): unit of length set by the container!

Spatial scaling invariance:

e Remains unitary if one changes volume of container.

1/3

e Not true for fixed finite value of a: n~/°a changes.

e If one applies to container a similarity of factor A:

E.
Eéﬁ

o i (X/N)
¢2(X) ? \3N/2




DIRECT CONSEQUENCES

In harmonic isotropic trap:

E.

— = function; (V).
hw

In free space:

e No bound state can be at unitarity.

In a box at thermodynamic limit:
e Assume that Eg/N = eg, F/N = f are intensive.

eo(n/A%) = eg(n) /A2 — eg(n) = ney ' M 8B (n),
f(n/X%,T/X%) = f(n,T) /A%
e Taking the derivative in A\ = 1:

53



IS THERE UNITARITY IN LOWER DIMENSIONS ?
In 1D:

e Tonks-Girardeau Bose gas.

e Mappable to an ideal Fermi gas.

In 2D:
e Low-k scattering characterized by asp:
1 :
7 = —In(kasp/2) — v +iw/2+...
k

Yo(r) = In(r/azp) for r>b.
e No scale invariance for finite a9 p.

e aop — +0o0: ideal gas.

1/2

e Have n"/“a9p ~ 1 to maximize interactions.



IS THERE UNITARITY IN OTHER PARTIAL WAVES ?

P-wave interaction for fully polarized fermions:

u(k) = +a+...

k2V;
e Tune V; to infinity with Feshbach resonance.

e Can one have a = 0 at resonance ?

e Lower bound for compact support potential of radius b:

aresb > 1.  (Pricoupenko)

e For V; large and negative, |u(k)| < k around
1

\/a|V8|.

ko =



IS THE UNITARY GAS ATTRACTIVE OR REPULSIVE ?

Common sayings:
e a > 0: effective repulsive interaction.
e a < 0: effective attractive interaction.

¢ |a| = oco: gas properties do not depend on the sign of a.

Naive way out of this paradox: (Kokkelmans)
e mean field with k-dependent coupling constant —Re f.

e unitary gas would then be non-interacting.



IS THE UNITARY GAS ATTRACTIVE OR REPULSIVE ?
Answer to paradox in short:

e Start from weakly interacting gas.
e T'wo adiabatic procedures
a:O+—>a:—|—oo and a=0 —a=-—00
lead to different states, that is they follow different branches.
INlustration on a toy model for fermions(Pricoupenko, Castin):

e A matter wave in hard wall spherical cavity of radius R
P(R)=0 R~n1/3
to mimick Pauli exclusion principle.

e In presence of a scattering center at the origin:

o =4 (1 1) o)

to mimick nearest neighbour interaction.



THE LOWEST ENERGY BRANCHES OF TOY MODEL
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II. HOW TO MODEL THE INTERACTION



APPROACH 1

A finite range model:
e potential with finite range b and infinite a
e calculate eigenenergies, thermodynamic properties, ...

e go to b = 0 limit at the end of the calculation

Non-trivial question: universality

e Eigenstate universal, i.e. reaches unitary limit, if (E;, 1;)
converge for b — 0.

e Typical non-universal state: E; — —oo

e To use p = exp(—BH), avoid models with non-universal
states: negative V(r) not good for large IN

e Favor models solvable by Quantum Monte Carlo.



APPROACH 2

Replace interaction by Bethe-Peierls contact conditions:

e Hamiltonian is the one of the ideal gas

_ hz 1 2 v 2
H = ——AX.»—I—imw X

¢ The domain D(H) is not the ideal gas one!
e Contact cond. for r;; — 0 at fixed centroid ﬁij #+ T

o ~ 1
V(X ) = Ajj(Rijs {rk k #1,5}) | — + o(1)

r’ij

e Scale invariance of D(H) to ensure universality
if p € D(H), 9 € D(H)VA > 0 with ¥y(X) = (X /N).

—
..

NB. Here we exclude 7; = 7;. Otherwise a regularized delta
interaction pseudo-potential appears.



REMINDER: DOMAIN OF A HAMILTONIAN

Practical definition:
e D(H) is the set of wave functions over which the action
of Hamiltonian is represented by differential operator H.
e If one does not care, paradoxes ... due to errors.
Simple example:

e One particle in 1D in a box:
. 1d?

- 2dx?
with boundary conditions ¥ (0) = ¥ (1) = 0.

e A wavefunction in the domain:
Y(x) = x(1 — x).
(Hyy, =5 ; (H?), =07
This last result is wrong: Hv € D(H). Right value: 30.



NON-TRIVIAL QUESTION IN APPROACH 2

Is the Hamiltonian self-adjoint 7
e This amounts to proving the unitarity of the gas.
e For N = 2: answer is yes. (book by Albeverio)
e For N = 3 bosons: no. See later.
e For N = 3 equal mass fermions: probably yes.

e For N > 4 equal mass fermions: ?

Partial universality:
e Restrict H to subspace where it is hermitian.
e This means: A non-complete family of universal states.

e For N = 3 bosons: all universal states determined.
See later. (Jonsell, Heiselberg and Pethick; Werner and
Castin)



e For arbitrary number IN of bosons, trivial universal states

(common to ideal gas) with A;; = 0:

’(b(f) — 0 for ri; — 0.

e These trivial states dominate the ideal gas density of
states at high energy.



A TRIVIAL QUESTION IN APPROACH 2

I see no interaction energy in H, is the energy of kinetic
nature only ?

Answer: no.



OUR CANDIDATE FOR APPROACH 1
A Hubbard-type lattice model (here for spin 1/2 fermions):

e cubic lattice of step b.

e “tunneling”: one-body eigenstates are plane waves with
dispersion relation e

- T ow[s h2k?
keD= ~ and ek = o

e on-site interaction With coupling constant gg
H=) > eka-» ay, +gozb3¢T("“ )1 (7)) (7)ehy (F)
keDo=1,l

¢ Field commutation relations mimicking continuous space
ones:

—_— —)

{";0'(7?)9 ";Z./(’F’,)} — 50‘0" 71;::




HOW TO CHOOSE THE COUPLING CONSTANT gg

To have the correct scattering length:
e scattering of two particles in the infinite lattice

e for a zero total momentum:

2
H,. = %+v with V= go|f =0)(7# =0

e calculate the T-matrix on the grid
T(E+i07) =V 4+ VG (E +i0T)V

e expand at low energy, setting E = h?q?/m, q > O:

Ah?/m

E|T(E +i0M) |k’ =
(kIT(E +107)[k7) a—1 + iq + O(q?b)




HOW TO CHOOSE THE COUPLING CONSTANT gg (2)

Result and discussion:
Arh?a/m

T 1 Ca/b

e Born regime: |a| < b

g0 with C = 2.442749...

e impenetrable regime: gg = +oo gives a = b/C
¢ infinite scattering length:
47 h?b
- Cm
so an attractive Hubbard-type model with gg — 0™ in
unitary limit.

go =



ADVANTAGES OF THIS LATTICE MODEL
For fermions, link with condensed matter physics:

e Unitary limit = zero filling factor limit of Hubbard model
with .
U b
— = 90/ — well chosen constant
J  h?/(2mb?)
e Quantum Monte Carlo possible with no sign problem:
TV ~ 015TF T2 ~ 0.2Tx
n ~ 0.44 and gap A ~ 0.44Ep (Juillet)

From a theoretical point of view:

e no tricky D(H), standard variational methods apply:
n < npcs = 0.5906... (Randeria)

From an experimental point of view in a lattice:

e For bosons: |a| = oo without a Feshbach resonance



b — 0 LATTICE MODEL <= BETHE-PEIERLS ?
(Pricoupenko, Castin)

Case of two particles:

e Proof of equivalence for the eigenergies E;

Case of three equal mass fermions:
e numerically, coincidence.
e analytically: if finite limit of E;(b) exists, coincidence.

e all E; > 0 checked up to b/L = 1/81 (diagonalisation of
a matrix 531441 x 531 441)



THE TWO MODELS FOR 3 EQUAL MASS FERMIONS
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CASES OF b — 0 LATTICE MODEL # BETHE-PEIERLS

Case of |a| = oo bosons:

e Variational calculation with |IV : ¥ = 0)

Eo(b) < goN[N — 2.92]/(2b3) "2 0.

e Approaches 1 and 2 are then not equivalent.

Same result for 2 massive fermions and a light particle:

e Variational calculation with the 2 fermions localized on
neighboring sites:
Eo(b) < 02 (1 _ 4zﬂ>
- mb? M
e For a large enough mass ratio M /m, Pauli principle not

sufficient to prevent 3-body deeply bound states (see lec-
ture by Petrov).



III. DYNAMICAL SCALING INVARIANCE IN A TRAP



FIRST MOMENT OF THE TRAPPING ENERGY:
VIRIAL THEOREM

We consider a normalized eigenstate of H:
H+y = E
then one has the virial theorem: (exp. check: Thomas)
(Y|H ) = 2{tp|Hirap|¥)
with Hyipap = %mszz.

Proof: for a Hermitian H, an eigenstate is a stationary
point of the mean energy

H
By = N o2 ) A2 (6] Horap )

(PAlPA)
() - -0




SCALING SOLUTION IN A TIME DEPENDENT TRAP
Isotropic trap is time dependent for ¢t > 0:

e Free Schrodinger equation over manifold r;; 7 O:

, K2 1 o

e plus contact conditions for r;; — O:
A;i(R;j {7k k #1,7})

rij

’Qb(’l:’l,...,’l“f\f) — ‘|‘0(1)‘

e Initially, stationary state in static trap w(t = 0) = w
with energy FE.

e Relevant for experiments: time of flight, collective modes.



Ansatz: gauge plus scaling transform:
o—i0(t)

_im).\Xz_
NN/2(5) T | 2k

$(X,t) = (X /A(2),0).

e scaling preserves contact conditions

e gauge transform preserves contact conditions:
1

2 .2 _op2 | .2

'r,i —|— Tj — 2RZ] —|— ZTZ].

e solves Schrodinger equation if

2
X = w— — W2 (H)A

o(t) = E/ h)\2(7')




PRACTICAL INTEREST OF SCALING SOLUTION
Ballistic expansion is a perfect lens:

e For mean density n(7,t) = A%u)no [7/A(t)]

e but also for higher order density correlation functions:

a$P [71/A(2), Ta/A(E))-

g(2) (7?1’ 7?23 t) — )\6(13)

e Applies even at T' > T, and for all gas polarisations.

¢ But requires |a| = oo and an isotropic harmonic trap.

Can one relax these two conditions ?
e At first sight, no:

— finite |a| breaks scaling invariance.

— anisotropic trap expected to lead to anisotropic expan-
sion, but anisotropic scaling does not preserve D(H)



e However there is a clever way to lift the two conditions
(Lobo).



APPLICATION: RAISING/LOWERING OPERATORS

Gedanken experiment: weak change of w for 0 <t < tg:
e Resulting change for the scaling parameter:
)\(t) _1—¢ e—Ziwt + c* eZiwt + 0(62).
An undamped mode of frequency 2w

e Resulting change for the wavefunction:
¢(fat) _ [e—iEt/h _ Ee—i(E—l—zhw)t/hL_I_

_I_e*e—i(E—Zﬁw)t/ﬁL_} ”(,b(f, O) + 0(62)

e Raising and lowering operators:

3N . H ,
Ly =4+ ——I—X-(?X: —|—h——mwX /h

2 W

e Repeated action of Ly: ladder of eigenenergies with
equal spacing 2hw.



LINK WITH SO(2,1) LIE ALGEBRA
Trapped unitary gas has SO(2,1) hidden symmetry:

e Energy ladders directly from commutation relations:
|[H,L4| = +2hw Ly Ly, L_| = —4H/(hw)

e Do not forget to check that L preserve domain.

e Introduce what will be the generators of the group:

Tty =t p =
1 _— — —
! 2 2 > 2hw
¢ Then commutation relations of SO(2,1) Lie algebra:
[T1, To] = —iT3  [12,T3] = ¢I1  [13,T1] = iT5

e Casimir operator, which commutes will all the elements
of the algebra

C=—4 [le + T2 — T?ﬂ — H?— (hw)2(LyL_+L_Ly)/2



EXISTENCE OF A BOSONIC DEGREE OF FREEDOM

Key point: the ladders are semi-infinite
e Virial theorem: E > 3hw/2. Action of L_ terminates:
L_+g = 0,
so one can define the ground energy step operator Hy.
e In terms of Casimir operator:

1/2
C =H;(H;—2w) sothat Hg = hw+ [C’ -+ (hw)z} / :

e From SO(2,1) algebra to creation/annihilation operators
b= [2(H+Hy)/hw) Y2L_, bl = Ly[2(H+Hy)/hw]™ /2
b,b1] = 1.

e Unitary gas has a decoupled bosonic degree of freedom,
the breathing mode:

H = H, + 2hwb'd  with  [b, Hy] = 0.



SECOND MOMENT OF THE TRAPPING ENERGY

In principle, fluctuations of trapping energy Hirap = mw?X 2 /2
are measurable:

e At thermal equilibrium in canonical ensemble:

4(HE,.) = (H?) + (H)hw [2<b’fb> n 1} .

e Proof: , .
W
Htrap — EH — Z (L—I— + L—)
hw H, 1/2
Hirap = o TA with A= [h_w + bTb] — b.

(Hg bTb) = (Hg) (bTb).

¢ Thermometry: measuring fluctuations of the breathing
mode of the unitary gas



SEPARABILITY IN HYPERSPHERICAL COORDINATES
e Hyperspherical coordinates (X, 7 = X /X)
¢ Integrate L_1)q = O:
[3N/2 4+ X0x + Ey/(hw) — mwX?/h)ype(X) = 0.

'(pg(f ) _ e—mwXZ/Zh XEQ/(hw)_SN/zf(ﬁ),
e Mapping to scale invariant zero energy free space eigen-
states
e Gives excited ladders in terms of Laguerre polynomials.

e The hyperangular problem was solved by Efimov for
N =3.

e This gives the solution to the trapped 3-body unitary
problem



MORE DETAILS ON SEPARABILITY FOR N > 2
Form of the N-body wavefunction:
¥(X) = vom(C)p(H)RCN/ZF(R)
e uses separability of the center of mass C
e uses separability in internal spherical coordinates (R, ﬁ)

e contact conditions put a constraint on ¢() only, for
Laplacian on unit sphere of dimension 3NN — 4:

Aﬁqb = —A0¢.
e Effective 2D Schrodinger equation for the radial part:

A F(R)+ s LR F(R) = E; F(R)
——— —Mmw = E;
om 2P 2omR2 | 2 nt

with s = A + [(3N — 5)/2]2.



PHYSICAL DISCUSSION FOR N =3

A F(R) + WS LR F(R) = Ey F(R)
—— —Mw = F;
om 2P 2omR2 ' 2 nt

Efimov: s is a root of transcendental equations.
A good case: equal mass fermions

e Proof that all s? > 0.

e Then one chooses s > 0. Numerically s > 1.
e Spectrum E = (s + 1+ 2q)hw, q € N.

A bad case: bosons

e There is a negative s%: sg = ¢ X 1.00624 ... then Whit-
taker functions are square integrable solutions VE;,; €
R: Hamiltonian not hermitian.

e Proof that all other s? are > 0.



SUGGESTIONS OF EXPERIMENTS

For fermions:
e measure gap A

e check/use of scaling transform: breathing mode, mea-
sure g(z)

e mixture of fermions with different masses

For bosons:

¢ 3-body universal states for |a| = oo at the node of an
optical lattice

¢ |a| = oo bosons in an optical lattice far from a Feshbach
resonance.



