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I. SIMPLE FACTS



WHAT IS THE UNITARY GAS ?

A gas...

• a dilute system with respect to interaction range:

nb3 � 1

• Scattering amplitude fk matters rather than V (r)

...at unitary limit:

• For relevant relative momentum k, fk reaches maximal
modulus: maximally interacting gas

fk = −
1

ik

• From optical theorem indeed:

Im fk = k |fk|
2 ⇒ fk = −

1

u(k) + ik
, u(k) real



WHAT THIS IMPLIES FOR AN ATOMIC GAS

S-wave low k expansion of scattering amplitude:

u(k) =
1

a
−

1

2
k2re + . . .

• a is scattering length

• re is effective range

• . . . assumed negligible for kb � 1

Unitary gas as a double limit:

(1) zero range limit kb � 1, k|re| � 1

(2) infinite scattering length limit: k|a| � 1

• If one assumes k ∼ n1/3 double limit achieved in present
experiments on broad Feshbach resonances (|re| ∼ b).

• Assumption k ∼ n1/3 not necessarily true (effective three-
body Efimov attraction, bosons or large mass ratio fermions)



CAN ONE HAVE re NON ZERO WITH b → 0

Yes, simple two-channel model of Feshbach resonance:

|k,-k> |mol>

Λ exp(-k
2
b

2
/2)

E
mol

• Tune Emol to have |a| = ∞

• Then effective range

re =
4b

π1/2
−

8π~
4

m2Λ2



WHY IS THE UNITARY GAS FASCINATING ?
Universality:

• no parameter left describing the interaction

• eigenenergies Ei depend on ~
2/m and on shape of con-

tainer U(~r ): unit of length set by the container!

Spatial scaling invariance:

• Remains unitary if one changes volume of container.

• Not true for fixed finite value of a: n1/3a changes.

• If one applies to container a similarity of factor λ:

Ei →
Ei

λ2

ψi( ~X ) →
ψi( ~X/λ)

λ3N/2



DIRECT CONSEQUENCES

In harmonic isotropic trap:
Ei

~ω
= functioni(N).

In free space:

• No bound state can be at unitarity.

In a box at thermodynamic limit:

• Assume that E0/N = e0, F/N = f are intensive.

e0(n/λ
3) = e0(n)/λ2 → e0(n) = ηe

ideal Fermi gas
0 (n).

f(n/λ3, T/λ2) = f(n, T )/λ2.

• Taking the derivative in λ = 1:
5

3
E − µN = TS (Zwerger)



IS THERE UNITARITY IN LOWER DIMENSIONS ?

In 1D:

• Tonks-Girardeau Bose gas.

• Mappable to an ideal Fermi gas.

In 2D:

• Low-k scattering characterized by a2D:

−
1

fk
= − ln(ka2D/2) − γ + iπ/2 + . . .

ψ0(r) = ln(r/a2D) for r > b.

• No scale invariance for finite a2D.

• a2D → +∞: ideal gas.

• Have n1/2a2D ∼ 1 to maximize interactions.



IS THERE UNITARITY IN OTHER PARTIAL WAVES ?

P-wave interaction for fully polarized fermions:

u(k) =
1

k2Vs
+ α+ . . .

• Tune Vs to infinity with Feshbach resonance.

• Can one have α = 0 at resonance ?

• Lower bound for compact support potential of radius b:

αresb ≥ 1. (Pricoupenko)

• For Vs large and negative, |u(k)| � k around

k0 =
1

√

α|Vs|
.



IS THE UNITARY GAS ATTRACTIVE OR REPULSIVE ?

Common sayings:

• a > 0: effective repulsive interaction.

• a < 0: effective attractive interaction.

• |a| = ∞: gas properties do not depend on the sign of a.

Naive way out of this paradox: (Kokkelmans)

• mean field with k-dependent coupling constant −Re fk

• unitary gas would then be non-interacting.



IS THE UNITARY GAS ATTRACTIVE OR REPULSIVE ?
Answer to paradox in short:

• Start from weakly interacting gas.

• Two adiabatic procedures

a = 0+ → a = +∞ and a = 0− → a = −∞

lead to different states, that is they follow different branches.

Illustration on a toy model for fermions(Pricoupenko, Castin):

• A matter wave in hard wall spherical cavity of radius R

φ(R) = 0 R ∼ n−1/3

to mimick Pauli exclusion principle.

• In presence of a scattering center at the origin:

φ(r) = A

(

1

r
−

1

a

)

+ o(1).

to mimick nearest neighbour interaction.



THE LOWEST ENERGY BRANCHES OF TOY MODEL
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II. HOW TO MODEL THE INTERACTION



APPROACH 1

A finite range model:

• potential with finite range b and infinite a

• calculate eigenenergies, thermodynamic properties, ...

• go to b = 0 limit at the end of the calculation

Non-trivial question: universality

• Eigenstate universal, i.e. reaches unitary limit, if (Ei, ψi)
converge for b → 0.

• Typical non-universal state: Ei → −∞

• To use ρ = exp(−βH), avoid models with non-universal
states: negative V (r) not good for large N (Seiringer,
Lobo)

• Favor models solvable by Quantum Monte Carlo.



APPROACH 2

Replace interaction by Bethe-Peierls contact conditions:

• Hamiltonian is the one of the ideal gas

H = −
~
2

2m
∆ ~X

+
1

2
mω2X2

• The domain D(H) is not the ideal gas one!

• Contact cond. for rij → 0 at fixed centroid ~Rij 6= ~rk:

ψ( ~X ) = Aij(~Rij; {~rk, k 6= i, j})

[

1

rij
−

1

a

]

+ o(1)

• Scale invariance of D(H) to ensure universality

if ψ ∈ D(H), ψλ ∈ D(H) ∀λ > 0 with ψλ( ~X ) = ψ( ~X/λ).

NB. Here we exclude ~ri = ~rj. Otherwise a regularized delta
interaction pseudo-potential appears.



REMINDER: DOMAIN OF A HAMILTONIAN

Practical definition:

•D(H) is the set of wave functions over which the action
of Hamiltonian is represented by differential operatorH.

• If one does not care, paradoxes ... due to errors.

Simple example:

• One particle in 1D in a box:

H = −
1

2

d2

dx2

with boundary conditions ψ(0) = ψ(1) = 0.

• A wavefunction in the domain:

ψ(x) = x(1 − x).

〈H〉ψ = 5 ; 〈H2〉ψ = 0?!

This last result is wrong: Hψ /∈ D(H). Right value: 30.



NON-TRIVIAL QUESTION IN APPROACH 2

Is the Hamiltonian self-adjoint ?

• This amounts to proving the unitarity of the gas.

• For N = 2: answer is yes. (book by Albeverio)

• For N = 3 bosons: no. See later.

• For N = 3 equal mass fermions: probably yes.

• For N ≥ 4 equal mass fermions: ?

Partial universality:

• Restrict H to subspace where it is hermitian.

• This means: A non-complete family of universal states.

• For N = 3 bosons: all universal states determined.
See later. (Jonsell, Heiselberg and Pethick; Werner and
Castin)



• For arbitrary numberN of bosons, trivial universal states
(common to ideal gas) with Aij ≡ 0:

ψ( ~X) → 0 for rij → 0.

• These trivial states dominate the ideal gas density of
states at high energy. (Werner and Castin)



A TRIVIAL QUESTION IN APPROACH 2

I see no interaction energy in H, is the energy of kinetic
nature only ?

Answer: no.

Ekin =

∫

~
2

2m
|∂ ~Xψ|2 = +∞.

Ekin + Eint = −

∫

~
2

2m
ψ∗∆ ~X

ψ.



OUR CANDIDATE FOR APPROACH 1

A Hubbard-type lattice model (here for spin 1/2 fermions):

• cubic lattice of step b.

• “tunneling”: one-body eigenstates are plane waves with
dispersion relation εk

~k ∈ D ≡

[

−
π

b
,
π

b

[3

and εk =
~
2k2

2m

• on-site interaction with coupling constant g0

H =
∑

~k∈D

∑

σ=↑,↓

εka
†
~k,σ
a~k,σ+g0

∑

~r

b3ψ̂
†
↑(~r )ψ̂

†
↓(~r )ψ̂↓(~r )ψ̂↑(~r )

• Field commutation relations mimicking continuous space
ones:

{ψ̂σ(~r ), ψ̂
†
σ′(~r

′)} = δσσ′
δ~r,~r ′

b3
.



HOW TO CHOOSE THE COUPLING CONSTANT g0

To have the correct scattering length: (Mora, Castin)

• scattering of two particles in the infinite lattice

• for a zero total momentum:

Hrel =
p2

m
+ V with V = g0|~r = ~0 〉〈~r = ~0 |

• calculate the T -matrix on the grid

T (E + i0+) = V + V Grel(E + i0+)V

• expand at low energy, setting E = ~
2q2/m, q ≥ 0:

〈~k |T (E + i0+)|~k ′〉 =
4π~

2/m

a−1 + iq + O(q2b)



HOW TO CHOOSE THE COUPLING CONSTANT g0 (2)

Result and discussion:

g0 =
4π~

2a/m

1 − Ca/b
with C = 2.442 749 . . .

• Born regime: |a| � b

• impenetrable regime: g0 = +∞ gives a = b/C

• infinite scattering length:

g0 = −
4π

C

~
2b

m

so an attractive Hubbard-type model with g0 → 0− in
unitary limit.



ADVANTAGES OF THIS LATTICE MODEL
For fermions, link with condensed matter physics:

• Unitary limit = zero filling factor limit of Hubbard model
with

U

J
=

g0/b
3

~2/(2mb2)
= well chosen constant

• Quantum Monte Carlo possible with no sign problem:

T Svistunov
c ' 0.15TF TBulgac

c ' 0.2TF
η ' 0.44 and gap ∆ ' 0.44EF (Juillet)

From a theoretical point of view:

• no tricky D(H), standard variational methods apply:

η ≤ ηBCS = 0.5906 . . . (Randeria)

From an experimental point of view in a lattice:

• For bosons: |a| = ∞ without a Feshbach resonance



b → 0 LATTICE MODEL ⇐⇒ BETHE-PEIERLS ?
(Pricoupenko, Castin)

Case of two particles:

• Proof of equivalence for the eigenergies Ei

Case of three equal mass fermions:

• numerically, coincidence.

• analytically: if finite limit of Ei(b) exists, coincidence.

• all Ei > 0 checked up to b/L = 1/81 (diagonalisation of
a matrix 531 441 × 531 441)



THE TWO MODELS FOR 3 EQUAL MASS FERMIONS
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CASES OF b → 0 LATTICE MODEL 6= BETHE-PEIERLS

Case of |a| = ∞ bosons:

• Variational calculation with |N : ~r = ~0〉

E0(b) ≤ g0N [N − 2.92]/(2b3)
b→0
→ −∞.

• Approaches 1 and 2 are then not equivalent.

Same result for 2 massive fermions and a light particle:

• Variational calculation with the 2 fermions localized on
neighboring sites:

E0(b) ≤ −0.2
~
2

mb2

(

1 − 42
m

M

)

• For a large enough mass ratio M/m, Pauli principle not
sufficient to prevent 3-body deeply bound states (see lec-
ture by Petrov).



III. DYNAMICAL SCALING INVARIANCE IN A TRAP



FIRST MOMENT OF THE TRAPPING ENERGY:
VIRIAL THEOREM

We consider a normalized eigenstate of H:

Hψ = Eψ

then one has the virial theorem: (exp. check: Thomas)

〈ψ|H|ψ〉 = 2〈ψ|Htrap|ψ〉

with Htrap = 1
2mω

2X2.

Proof: for a Hermitian H, an eigenstate is a stationary
point of the mean energy

E(λ) ≡
〈ψλ|H|ψλ〉

〈ψλ|ψλ〉
= λ−2〈ψ|H−Htrap|ψ〉+λ2〈ψ|Htrap|ψ〉.

(

dE

dλ

)

(λ = 1) = 0.



SCALING SOLUTION IN A TIME DEPENDENT TRAP
Isotropic trap is time dependent for t > 0:

• Free Schrödinger equation over manifold rij 6= 0:

i~∂tψ =

[

−
~
2

2m
∆ ~X

+
1

2
mω2(t)X2

]

ψ

• plus contact conditions for rij → 0:

ψ(~r1, . . . , ~rN) =
Aij( ~Rij, {~rk, k 6= i, j})

rij
+ o(1).

• Initially, stationary state in static trap ω(t = 0) = ω
with energy E.

• Relevant for experiments: time of flight, collective modes.



Ansatz: gauge plus scaling transform:

ψ( ~X, t) =
e−iθ(t)

λ3N/2(t)
exp

[

imλ̇

2~λ
X2

]

ψ( ~X/λ(t), 0).

• scaling preserves contact conditions

• gauge transform preserves contact conditions:

r2i + r2j = 2R2
ij +

1

2
r2ij.

• solves Schrödinger equation if

λ̈ =
ω2

0

λ3
− ω2(t)λ

θ(t) = E

∫ t

0

dτ

~λ2(τ )
.

Y. Castin, Comptes Rendus Physique 5, 407 (2004).



PRACTICAL INTEREST OF SCALING SOLUTION
Ballistic expansion is a perfect lens:

• For mean density n(~r, t) = 1
λ3(t)

n0[~r/λ(t)]

• but also for higher order density correlation functions:

g(2)(~r1, ~r2, t) =
1

λ6(t)
g
(2)
0 [~r1/λ(t), ~r2/λ(t)].

• Applies even at T > Tc and for all gas polarisations.

• But requires |a| = ∞ and an isotropic harmonic trap.

Can one relax these two conditions ?

• At first sight, no:

– finite |a| breaks scaling invariance.

– anisotropic trap expected to lead to anisotropic expan-
sion, but anisotropic scaling does not preserve D(H)



• However there is a clever way to lift the two conditions
(Lobo).



APPLICATION: RAISING/LOWERING OPERATORS

Gedanken experiment: weak change of ω for 0 < t < tf :

• Resulting change for the scaling parameter:

λ(t) − 1 = ε e−2iωt + ε∗ e2iωt + O(ε2).

An undamped mode of frequency 2ω (Pitaevskii, Rosch).

• Resulting change for the wavefunction:

ψ( ~X, t) =
[

e−iEt/~ − εe−i(E+2~ω)t/~L+

+ε∗e−i(E−2~ω)t/~L−

]

ψ( ~X, 0) + O(ε2)

• Raising and lowering operators:

L± = ±

[

3N

2
+ ~X · ∂ ~X

]

+
H

~ω
−mωX2/~

• Repeated action of L±: ladder of eigenenergies with
equal spacing 2~ω.



LINK WITH SO(2,1) LIE ALGEBRA (Pitaevskii, Rosch)

Trapped unitary gas has SO(2,1) hidden symmetry:

• Energy ladders directly from commutation relations:

[H,L±] = ±2~ω L± [L+, L−] = −4H/(~ω)

• Do not forget to check that L± preserve domain.

• Introduce what will be the generators of the group:

T1 ± iT2 =
L±

2
T3 =

H

2~ω
• Then commutation relations of SO(2,1) Lie algebra:

[T1, T2] = −iT3 [T2, T3] = iT1 [T3, T1] = iT2

• Casimir operator, which commutes will all the elements
of the algebra

C = −4
[

T 2
1 + T 2

2 − T 2
3

]

= H2−(~ω)2(L+L−+L−L+)/2



EXISTENCE OF A BOSONIC DEGREE OF FREEDOM

Key point: the ladders are semi-infinite

• Virial theorem: E ≥ 3~ω/2. Action of L− terminates:

L−ψg = 0,

so one can define the ground energy step operator Hg.

• In terms of Casimir operator:

C = Hg(Hg−2~ω) so that Hg = ~ω+
[

C + (~ω)2
]1/2

.

• From SO(2,1) algebra to creation/annihilation operators

b = [2(H+Hg)/~ω]−1/2L−, b† = L+[2(H+Hg)/~ω]−1/2

[b, b†] = 1.

• Unitary gas has a decoupled bosonic degree of freedom,
the breathing mode:

H = Hg + 2~ωb†b with [b,Hg] = 0.



SECOND MOMENT OF THE TRAPPING ENERGY

In principle, fluctuations of trapping energyHtrap = mω2X2/2
are measurable:

• At thermal equilibrium in canonical ensemble:

4〈H2
trap〉 = 〈H2〉 + 〈H〉~ω

[

2〈b†b〉 + 1
]

.

• Proof:

Htrap =
1

2
H −

~ω

4
(L+ + L−)

Htrap =
~ω

2
A†A with A =

[

Hg

~ω
+ b†b

]1/2

− b.

〈Hg b
†b〉 = 〈Hg〉〈b

†b〉.

• Thermometry: measuring fluctuations of the breathing
mode of the unitary gas



SEPARABILITY IN HYPERSPHERICAL COORDINATES

• Hyperspherical coordinates (X,~n ≡ ~X/X)

• Integrate L−ψg = 0:

[3N/2 +X∂X + Eg/(~ω) −mωX2/~]ψg( ~X) = 0.

ψg( ~X ) = e−mωX2/2~XEg/(~ω)−3N/2f(~n).

• Mapping to scale invariant zero energy free space eigen-
states (Tan)

• Gives excited ladders in terms of Laguerre polynomials.

• The hyperangular problem was solved by Efimov for
N = 3 .

• This gives the solution to the trapped 3-body unitary
problem (Werner, Castin).



MORE DETAILS ON SEPARABILITY FOR N > 2

Form of the N -body wavefunction:

ψ( ~X ) = ψCM( ~C )φ(~Ω )R(5−3N)/2F (R)

• uses separability of the center of mass ~C

• uses separability in internal spherical coordinates (R, ~Ω)

• contact conditions put a constraint on φ(~Ω ) only, for
Laplacian on unit sphere of dimension 3N − 4:

∆~Ω
φ = −Λφ.

• Effective 2D Schrödinger equation for the radial part:

−
~
2

2m
∆2DF (R)+

(

~
2s2

2mR2
+

1

2
mω2R2

)

F (R) = EintF (R)

with s2 = Λ + [(3N − 5)/2]2.



PHYSICAL DISCUSSION FOR N = 3

−
~
2

2m
∆2DF (R) +

(

~
2s2

2mR2
+

1

2
mω2R2

)

F (R) = EintF (R)

Efimov: s is a root of transcendental equations.
A good case: equal mass fermions

• Proof that all s2 ≥ 0. (Werner and Castin)

• Then one chooses s ≥ 0. Numerically s > 1.

• Spectrum E = (s+ 1 + 2q)~ω, q ∈ N.

A bad case: bosons

• There is a negative s2: s0 = i× 1.00624 . . . then Whit-
taker functions are square integrable solutions ∀Eint ∈
R: Hamiltonian not hermitian.

• Proof that all other s2 are ≥ 0. (Werner and Castin)



SUGGESTIONS OF EXPERIMENTS

For fermions:

• measure gap ∆

• check/use of scaling transform: breathing mode, mea-

sure g(2)

• mixture of fermions with different masses

For bosons:

• 3-body universal states for |a| = ∞ at the node of an
optical lattice

• |a| = ∞ bosons in an optical lattice far from a Feshbach
resonance.


