THE UNITARY GAS

OUTLINE:

I. Simple facts
II. How to model the interaction
III. Dynamical scaling invariance in a trap

I. SIMPLE FACTS

WHAT IS THE UNITARY GAS ?

A gas...

- a dilute system with respect to interaction range:

$$
n b^{3} \ll 1
$$

- Scattering amplitude f_{k} matters rather than $V(r)$
...at unitary limit:
- For relevant relative momentum k, f_{k} reaches maximal modulus: maximally interacting gas

$$
f_{k}=-\frac{1}{i k}
$$

- From optical theorem indeed:

$$
\operatorname{Im} f_{k}=k\left|f_{k}\right|^{2} \Rightarrow f_{k}=-\frac{1}{u(k)+i k}, \quad u(k) \text { real }
$$

WHAT THIS IMPLIES FOR AN ATOMIC GAS

S-wave low \boldsymbol{k} expansion of scattering amplitude:

$$
u(k)=\frac{1}{a}-\frac{1}{2} k^{2} r_{e}+\ldots
$$

- a is scattering length
- r_{e} is effective range
- . . . assumed negligible for $k b \ll 1$

Unitary gas as a double limit:
(1) zero range limit $k b \ll 1, k\left|r_{e}\right| \ll 1$
(2) infinite scattering length limit: $k|a| \gg 1$

- If one assumes $k \sim n^{1 / 3}$ double limit achieved in present experiments on broad Feshbach resonances $\left(\left|r_{e}\right| \sim b\right)$.
- Assumption $k \sim n^{1 / 3}$ not necessarily true (effective threebody Efimov attraction, bosons or large mass ratio fermions)

CAN ONE HAVE r_{e} NON ZERO WITH $b \rightarrow 0$

Yes, simple two-channel model of Feshbach resonance:

- Tune $E_{\text {mol }}$ to have $|a|=\infty$
- Then effective range

$$
r_{e}=\frac{4 b}{\pi^{1 / 2}}-\frac{8 \pi \hbar^{4}}{m^{2} \Lambda^{2}}
$$

WHY IS THE UNITARY GAS FASCINATING?

Universality:

- no parameter left describing the interaction
- eigenenergies E_{i} depend on \hbar^{2} / m and on shape of container $\boldsymbol{U}(\vec{r})$: unit of length set by the container!

Spatial scaling invariance:

- Remains unitary if one changes volume of container.
- Not true for fixed finite value of $a: n^{1 / 3} a$ changes.
- If one applies to container a similarity of factor $\boldsymbol{\lambda}$:

$$
\begin{aligned}
E_{i} & \rightarrow \frac{E_{i}}{\lambda^{2}} \\
\psi_{i}(\vec{X}) & \rightarrow \frac{\psi_{i}(\vec{X} / \lambda)}{\lambda^{3 N / 2}}
\end{aligned}
$$

DIRECT CONSEQUENCES

In harmonic isotropic trap:

$$
\frac{E_{i}}{\hbar \omega}=\text { function }_{i}(N)
$$

In free space:

- No bound state can be at unitarity.

In a box at thermodynamic limit:

- Assume that $E_{0} / \boldsymbol{N}=e_{0}, F / N=f$ are intensive.

$$
\begin{aligned}
e_{0}\left(n / \lambda^{3}\right)= & e_{0}(n) / \lambda^{2} \rightarrow e_{0}(n)=\eta e_{0}^{\text {ideal Fermi gas }}(n) \\
& f\left(n / \lambda^{3}, T / \lambda^{2}\right)=f(n, T) / \lambda^{2}
\end{aligned}
$$

- Taking the derivative in $\lambda=1$:

$$
\frac{5}{3} \boldsymbol{E}-\boldsymbol{\mu} \boldsymbol{N}=\boldsymbol{T} \boldsymbol{S} \quad \text { (Zwerger) }
$$

IS THERE UNITARITY IN LOWER DIMENSIONS?

In 1D:

- Tonks-Girardeau Bose gas.
- Mappable to an ideal Fermi gas.

In 2D:

- Low- k scattering characterized by $a_{2 D}$:

$$
\begin{gathered}
-\frac{1}{f_{k}}=-\ln \left(k a_{2 D} / 2\right)-\gamma+i \pi / 2+\ldots \\
\psi_{0}(r)=\ln \left(r / a_{2 D}\right) \quad \text { for } \quad r>b
\end{gathered}
$$

- No scale invariance for finite $a_{2 D}$.
- $a_{2 \mathrm{D}} \rightarrow+\infty$: ideal gas.
- Have $n^{1 / 2} a_{2 D} \sim 1$ to maximize interactions.

IS THERE UNITARITY IN OTHER PARTIAL WAVES?

P -wave interaction for fully polarized fermions:

$$
u(k)=\frac{1}{k^{2} \mathcal{V}_{s}}+\alpha+\ldots
$$

- Tune \mathcal{V}_{s} to infinity with Feshbach resonance.
- Can one have $\alpha=0$ at resonance ?
- Lower bound for compact support potential of radius b :

$$
\alpha_{\mathrm{res}} b \geq 1 . \quad \text { (Pricoupenko) }
$$

- For \mathcal{V}_{s} large and negative, $|\boldsymbol{u}(\boldsymbol{k})| \ll k$ around

$$
k_{0}=\frac{1}{\sqrt{\alpha\left|\mathcal{V}_{s}\right|}}
$$

Common sayings:

- $a>0$: effective repulsive interaction.
- $a<0$: effective attractive interaction.
$\bullet|a|=\infty$: gas properties do not depend on the sign of a.
Naive way out of this paradox: (Kokkelmans)
- mean field with \boldsymbol{k}-dependent coupling constant $-\operatorname{Re} \boldsymbol{f}_{\boldsymbol{k}}$
- unitary gas would then be non-interacting.

Answer to paradox in short:

- Start from weakly interacting gas.
- Two adiabatic procedures

$$
a=0^{+} \rightarrow a=+\infty \quad \text { and } \quad a=0^{-} \rightarrow a=-\infty
$$

lead to different states, that is they follow different branches. Illustration on a toy model for fermions(Pricoupenko, Castin):

- A matter wave in hard wall spherical cavity of radius \boldsymbol{R}

$$
\phi(R)=0 \quad R \sim n^{-1 / 3}
$$

to mimick Pauli exclusion principle.

- In presence of a scattering center at the origin:

$$
\phi(r)=A\left(\frac{1}{r}-\frac{1}{a}\right)+o(1)
$$

to mimick nearest neighbour interaction.

THE LOWEST ENERGY BRANCHES OF TOY MODEL

II. HOW TO MODEL THE INTERACTION

APPROACH 1

A finite range model:

- potential with finite range b and infinite a
- calculate eigenenergies, thermodynamic properties, ...
- go to $b=0$ limit at the end of the calculation

Non-trivial question: universality

- Eigenstate universal, i.e. reaches unitary limit, if $\left(\boldsymbol{E}_{\boldsymbol{i}}, \psi_{i}\right)$ converge for $\boldsymbol{b} \longrightarrow \mathbf{0}$.
- Typical non-universal state: $\boldsymbol{E}_{\boldsymbol{i}} \rightarrow-\infty$
- To use $\rho=\exp (-\boldsymbol{\beta H})$, avoid models with non-universal states: negative $V(r)$ not good for large N (Seiringer, Lobo)
- Favor models solvable by Quantum Monte Carlo.

APPROACH 2

Replace interaction by Bethe-Peierls contact conditions:

- Hamiltonian is the one of the ideal gas

$$
H=-\frac{\hbar^{2}}{2 m} \Delta_{\vec{X}}+\frac{1}{2} m \omega^{2} X^{2}
$$

- The domain $\boldsymbol{D}(\boldsymbol{H})$ is not the ideal gas one!
- Contact cond. for $r_{i j} \rightarrow 0$ at fixed centroid $\vec{R}_{i j} \neq \vec{r}_{\boldsymbol{k}}$:

$$
\psi(\vec{X})=A_{i j}\left(\vec{R}_{i j} ;\left\{\vec{r}_{k}, k \neq i, j\right\}\right)\left[\frac{1}{r_{i j}}-\frac{1}{a}\right]+o(1)
$$

- Scale invariance of $\boldsymbol{D}(\boldsymbol{H})$ to ensure universality if $\psi \in D(H), \psi_{\lambda} \in D(H) \forall \lambda>0$ with $\psi_{\lambda}(\vec{X})=\psi(\vec{X} / \lambda)$.
NB. Here we exclude $\overrightarrow{\boldsymbol{r}}_{\boldsymbol{i}}=\boldsymbol{r}_{\boldsymbol{j}}$. Otherwise a regularized delta interaction pseudo-potential appears.

REMINDER: DOMAIN OF A HAMILTONIAN

Practical definition:

- $\boldsymbol{D}(\boldsymbol{H})$ is the set of wave functions over which the action of Hamiltonian is represented by differential operator \boldsymbol{H}.
- If one does not care, paradoxes ... due to errors.

Simple example:

- One particle in 1D in a box:

$$
H=-\frac{1}{2} \frac{d^{2}}{d x^{2}}
$$

with boundary conditions $\psi(0)=\psi(1)=0$.

- A wavefunction in the domain:

$$
\begin{gathered}
\psi(x)=x(1-x) \\
\langle H\rangle_{\psi}=5 \quad ; \quad\left\langle H^{2}\right\rangle_{\psi}=0 ?!
\end{gathered}
$$

This last result is wrong: $H \psi \notin D(H)$. Right value: 30.

NON-TRIVIAL QUESTION IN APPROACH 2

Is the Hamiltonian self-adjoint?

- This amounts to proving the unitarity of the gas.
- For $N=2$: answer is yes. (book by Albeverio)
- For $N=3$ bosons: no. See later.
- For $N=3$ equal mass fermions: probably yes.
- For $N \geq 4$ equal mass fermions: ?

Partial universality:

- Restrict \boldsymbol{H} to subspace where it is hermitian.
- This means: A non-complete family of universal states.
- For $N=3$ bosons: all universal states determined. See later. (Jonsell, Heiselberg and Pethick; Werner and Castin)
- For arbitrary number N of bosons, trivial universal states (common to ideal gas) with $A_{i j} \equiv 0$:

$$
\psi(\vec{X}) \rightarrow 0 \quad \text { for } \quad r_{i j} \rightarrow 0
$$

- These trivial states dominate the ideal gas density of states at high energy. (Werner and Castin)

A TRIVIAL QUESTION IN APPROACH 2

I see no interaction energy in H, is the energy of kinetic nature only?

Answer: no.

$$
\begin{gathered}
E_{\mathrm{kin}}=\int \frac{\hbar^{2}}{2 m}\left|\partial_{\vec{X}^{\prime}} \psi\right|^{2}=+\infty \\
E_{\mathrm{kin}}+E_{\mathrm{int}}=-\int \frac{\hbar^{2}}{2 m} \psi^{*} \Delta_{\vec{X}} \psi
\end{gathered}
$$

OUR CANDIDATE FOR APPROACH 1

A Hubbard-type lattice model (here for spin $1 / 2$ fermions):

- cubic lattice of step b.
- "tunneling": one-body eigenstates are plane waves with dispersion relation ϵ_{k}

$$
\vec{k} \in \mathcal{D} \equiv\left[-\frac{\pi}{b}, \frac{\pi}{b}\left[\begin{array}{l}
3 \\
\quad \text { and } \quad \epsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m}
\end{array}\right.\right.
$$

- on-site interaction with coupling constant g_{0}

$$
\boldsymbol{H}=\sum_{\vec{k} \in \mathcal{D}} \sum_{\sigma=\uparrow, \downarrow} \epsilon_{k} a_{\vec{k}, \sigma}^{\dagger} a_{\vec{k}, \sigma}+g_{0} \sum_{\vec{r}} b^{3} \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r})
$$

- Field commutation relations mimicking continuous space ones:

$$
\left\{\hat{\psi}_{\sigma}(\vec{r}), \hat{\psi}_{\sigma^{\prime}}^{\dagger}\left(\vec{r}^{\prime}\right)\right\}=\delta_{\sigma \sigma^{\prime}} \frac{\delta_{\vec{r}, \vec{r}^{\prime}}}{b^{3}}
$$

HOW TO CHOOSE THE COUPLING CONSTANT \boldsymbol{g}_{0}

To have the correct scattering length: (Mora, Castin)

- scattering of two particles in the infinite lattice
- for a zero total momentum:

$$
H_{\mathrm{rel}}=\frac{p^{2}}{m}+V \quad \text { with } \quad V=g_{0}|\vec{r}=\overrightarrow{0}\rangle\langle\vec{r}=\overrightarrow{0}|
$$

- calculate the T-matrix on the grid

$$
T\left(E+i 0^{+}\right)=V+V G_{\mathrm{rel}}\left(E+i 0^{+}\right) V
$$

- expand at low energy, setting $E=\hbar^{2} q^{2} / m, q \geq 0$:

$$
\langle\vec{k}| T\left(E+i 0^{+}\right)\left|\vec{k}^{\prime}\right\rangle=\frac{4 \pi \hbar^{2} / m}{a^{-1}+i q+O\left(q^{2} b\right)}
$$

HOW TO CHOOSE THE COUPLING CONSTANT g_{0} (2)

Result and discussion:

$$
g_{0}=\frac{4 \pi \hbar^{2} a / m}{1-C a / b} \quad \text { with } \quad C=2.442749 \ldots
$$

- Born regime: $|a| \ll b$
- impenetrable regime: $g_{0}=+\infty$ gives $a=b / C$
- infinite scattering length:

$$
g_{0}=-\frac{4 \pi}{C} \frac{\hbar^{2} b}{m}
$$

so an attractive Hubbard-type model with $g_{0} \rightarrow 0^{-}$in unitary limit.

ADVANTAGES OF THIS LATTICE MODEL

For fermions, link with condensed matter physics:

- Unitary limit = zero filling factor limit of Hubbard model with

$$
\frac{U}{J}=\frac{g_{0} / b^{3}}{\hbar^{2} /\left(2 m b^{2}\right)}=\text { well chosen constant }
$$

- Quantum Monte Carlo possible with no sign problem:

$$
\begin{gathered}
\boldsymbol{T}_{\boldsymbol{c}}^{\text {Svistunov }} \simeq 0.15 T_{\boldsymbol{F}} \quad \boldsymbol{T}_{\boldsymbol{c}}^{\text {Bulgac }} \simeq 0.2 \boldsymbol{T}_{\boldsymbol{F}} \\
\boldsymbol{\eta} \simeq 0.44 \text { and gap } \Delta \simeq 0.44 \boldsymbol{E}_{\boldsymbol{F}} \quad \text { (Juillet) }
\end{gathered}
$$

From a theoretical point of view:

- no tricky $\boldsymbol{D}(\boldsymbol{H})$, standard variational methods apply:

$$
\left.\boldsymbol{\eta} \leq \eta_{\mathrm{BCS}}=0.5906 \ldots \quad \text { (Randeria }\right)
$$

From an experimental point of view in a lattice:

- For bosons: $|a|=\infty$ without a Feshbach resonance

$b \rightarrow 0$ LATTICE MODEL \Longleftrightarrow BETHE-PEIERLS ?

 (Pricoupenko, Castin)Case of two particles:

- Proof of equivalence for the eigenergies $\boldsymbol{E}_{\boldsymbol{i}}$

Case of three equal mass fermions:

- numerically, coincidence.
- analytically: if finite limit of $\boldsymbol{E}_{\boldsymbol{i}}(\boldsymbol{b})$ exists, coincidence.
- all $E_{i}>0$ checked up to $b / L=1 / 81$ (diagonalisation of a matrix 531441×531441)

THE TWO MODELS FOR 3 EQUAL MASS FERMIONS

CASES OF $b \rightarrow 0$ LATTICE MODEL \neq BETHE-PEIERLS

Case of $|\boldsymbol{a}|=\infty$ bosons:

- Variational calculation with $|N: \vec{r}=\overrightarrow{0}\rangle$

$$
E_{0}(b) \leq g_{0} N[N-2.92] /\left(2 b^{3}\right) \xrightarrow{b \rightarrow 0}-\infty
$$

- Approaches 1 and 2 are then not equivalent.

Same result for 2 massive fermions and a light particle:

- Variational calculation with the 2 fermions localized on neighboring sites:

$$
E_{0}(b) \leq-0.2 \frac{\hbar^{2}}{m b^{2}}\left(1-42 \frac{m}{M}\right)
$$

- For a large enough mass ratio M / m, Pauli principle not sufficient to prevent 3-body deeply bound states (see lecture by Petrov).

III. DYNAMICAL SCALING INVARIANCE IN A TRAP

FIRST MOMENT OF THE TRAPPING ENERGY: VIRIAL THEOREM

We consider a normalized eigenstate of \boldsymbol{H} :

$$
\boldsymbol{H} \psi=\boldsymbol{E} \psi
$$

then one has the virial theorem: (exp. check: Thomas)

$$
\langle\psi| H|\psi\rangle=2\langle\psi| H_{\text {trap }}|\psi\rangle
$$

with $H_{\text {trap }}=\frac{1}{2} m \omega^{2} X^{2}$.
Proof: for a Hermitian \boldsymbol{H}, an eigenstate is a stationary point of the mean energy

$$
\begin{aligned}
& E(\lambda) \equiv \frac{\left\langle\psi_{\lambda}\right| H\left|\psi_{\lambda}\right\rangle}{\left\langle\psi_{\lambda} \mid \psi_{\lambda}\right\rangle}=\lambda^{-2}\langle\psi| H-H_{\text {trap }}|\psi\rangle+\lambda^{2}\langle\psi| H_{\text {trap }}|\psi\rangle \\
&\left(\frac{d E}{d \lambda}\right)(\lambda=1)=0
\end{aligned}
$$

SCALING SOLUTION IN A TIME DEPENDENT TRAP

 Isotropic trap is time dependent for $t>0$:- Free Schrödinger equation over manifold $r_{i j} \neq 0$:

$$
i \hbar \partial_{t} \psi=\left[-\frac{\hbar^{2}}{2 m} \Delta_{\vec{X}}+\frac{1}{2} m \omega^{2}(t) X^{2}\right] \psi
$$

- plus contact conditions for $r_{i j} \rightarrow 0$:

$$
\psi\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)=\frac{A_{i j}\left(\vec{R}_{i j},\left\{\vec{r}_{k}, k \neq i, j\right\}\right)}{r_{i j}}+o(1) .
$$

- Initially, stationary state in static $\operatorname{trap} \omega(t=0)=\omega$ with energy \boldsymbol{E}.
- Relevant for experiments: time of flight, collective modes.

Ansatz: gauge plus scaling transform:

$$
\psi(\vec{X}, t)=\frac{e^{-i \theta(t)}}{\lambda^{3 N / 2}(t)} \exp \left[\frac{i m \dot{\lambda}}{2 \hbar \lambda} X^{2}\right] \psi(\vec{X} / \lambda(t), 0)
$$

- scaling preserves contact conditions
- gauge transform preserves contact conditions:

$$
r_{i}^{2}+r_{j}^{2}=2 R_{i j}^{2}+\frac{1}{2} r_{i j}^{2}
$$

- solves Schrödinger equation if

$$
\begin{aligned}
\ddot{\lambda} & =\frac{\omega_{0}^{2}}{\lambda^{3}}-\omega^{2}(t) \lambda \\
\theta(t) & =E \int_{0}^{t} \frac{d \tau}{\hbar \lambda^{2}(\tau)}
\end{aligned}
$$

Y. Castin, Comptes Rendus Physique 5, 407 (2004).

PRACTICAL INTEREST OF SCALING SOLUTION

 Ballistic expansion is a perfect lens:- For mean density $n(\vec{r}, t)=\frac{1}{\lambda^{3}(t)} n_{0}[\vec{r} / \lambda(t)]$
- but also for higher order density correlation functions:

$$
g^{(2)}\left(\vec{r}_{1}, \vec{r}_{2}, t\right)=\frac{1}{\lambda^{6}(t)} g_{0}^{(2)}\left[\vec{r}_{1} / \lambda(t), \vec{r}_{2} / \lambda(t)\right]
$$

- Applies even at $\boldsymbol{T}>T_{c}$ and for all gas polarisations.
- But requires $|a|=\infty$ and an isotropic harmonic trap.

Can one relax these two conditions ?

- At first sight, no:
- finite $|a|$ breaks scaling invariance.
- anisotropic trap expected to lead to anisotropic expansion, but anisotropic scaling does not preserve $\boldsymbol{D}(\boldsymbol{H})$
- However there is a clever way to lift the two conditions (Lobo).

APPLICATION: RAISING/LOWERING OPERATORS

Gedanken experiment: weak change of ω for $0<t<t_{\boldsymbol{f}}$:

- Resulting change for the scaling parameter:

$$
\lambda(t)-1=\epsilon e^{-2 i \omega t}+\epsilon^{*} e^{2 i \omega t}+O\left(\epsilon^{2}\right)
$$

An undamped mode of frequency 2ω (Pitaevskii, Rosch).

- Resulting change for the wavefunction:

$$
\begin{aligned}
& \psi(\vec{X}, t)=\left[e^{-i E t / \hbar}-\epsilon e^{-i(E+2 \hbar \omega) t / \hbar} L_{+}\right. \\
& \left.+\epsilon^{*} e^{-i(E-2 \hbar \omega) t / \hbar} L_{-}\right] \psi(\vec{X}, 0)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

- Raising and lowering operators:

$$
L_{ \pm}= \pm\left[\frac{3 N}{2}+\vec{X} \cdot \partial_{\vec{X}}\right]+\frac{H}{\hbar \omega}-m \omega X^{2} / \hbar
$$

- Repeated action of $L_{ \pm}$: ladder of eigenenergies with equal spacing $2 \hbar \omega$.

LINK WITH SO $(2,1)$ LIE ALGEBRA (Pitaevskii, Rosch)

Trapped unitary gas has $\mathrm{SO}(2,1)$ hidden symmetry:

- Energy ladders directly from commutation relations:

$$
\left[H, L_{ \pm}\right]= \pm 2 \hbar \omega L_{ \pm} \quad\left[L_{+}, L_{-}\right]=-4 H /(\hbar \omega)
$$

- Do not forget to check that $L_{ \pm}$preserve domain.
- Introduce what will be the generators of the group:

$$
T_{1} \pm i T_{2}=\frac{L_{ \pm}}{2} \quad T_{3}=\frac{H}{2 \hbar \omega}
$$

- Then commutation relations of $\operatorname{SO}(2,1)$ Lie algebra:

$$
\left[T_{1}, T_{2}\right]=-i T_{3} \quad\left[T_{2}, T_{3}\right]=i T_{1} \quad\left[T_{3}, T_{1}\right]=i T_{2}
$$

- Casimir operator, which commutes will all the elements of the algebra

$$
C=-4\left[T_{1}^{2}+T_{2}^{2}-T_{3}^{2}\right]=H^{2}-(\hbar \omega)^{2}\left(L_{+} L_{-}+L_{-} L_{+}\right) / 2
$$

EXISTENCE OF A BOSONIC DEGREE OF FREEDOM

Key point: the ladders are semi-infinite

- Virial theorem: $E \geq 3 \hbar \omega / 2$. Action of L_{-}terminates:

$$
L_{-} \psi_{g}=0
$$

so one can define the ground energy step operator $\boldsymbol{H}_{\boldsymbol{g}}$.

- In terms of Casimir operator:

$$
C=H_{g}\left(H_{g}-2 \hbar \omega\right) \text { so that } H_{g}=\hbar \omega+\left[C+(\hbar \omega)^{2}\right]^{1 / 2}
$$

- From $\operatorname{SO}(2,1)$ algebra to creation/annihilation operators

$$
\begin{gathered}
b=\left[2\left(H+H_{g}\right) / \hbar \omega\right]^{-1 / 2} L_{-}, \quad b^{\dagger}=L_{+}\left[2\left(H+H_{g}\right) / \hbar \omega\right]^{-1 / 2} \\
{\left[b, b^{\dagger}\right]=1}
\end{gathered}
$$

- Unitary gas has a decoupled bosonic degree of freedom, the breathing mode:

$$
H=H_{g}+2 \hbar \omega b^{\dagger} b \quad \text { with } \quad\left[b, H_{g}\right]=0
$$

SECOND MOMENT OF THE TRAPPING ENERGY

In principle, fluctuations of trapping energy $H_{\text {trap }}=m \omega^{2} X^{2} / 2$ are measurable:

- At thermal equilibrium in canonical ensemble:

$$
4\left\langle H_{\text {trap }}^{2}\right\rangle=\left\langle H^{2}\right\rangle+\langle H\rangle \hbar \omega\left[2\left\langle b^{\dagger} b\right\rangle+1\right]
$$

- Proof:

$$
H_{\text {trap }}=\frac{1}{2} H-\frac{\hbar \omega}{4}\left(L_{+}+L_{-}\right)
$$

$$
\begin{gathered}
H_{\text {trap }}=\frac{\hbar \omega}{2} A^{\dagger} A \quad \text { with } \quad A=\left[\frac{H_{g}}{\hbar \omega}+b^{\dagger} b\right]^{1 / 2}-b . \\
\left\langle H_{g} b^{\dagger} b\right\rangle=\left\langle H_{g}\right\rangle\left\langle b^{\dagger} b\right\rangle
\end{gathered}
$$

- Thermometry: measuring fluctuations of the breathing mode of the unitary gas

SEPARABILITY IN HYPERSPHERICAL COORDINATES

- Hyperspherical coordinates $(X, \vec{n} \equiv \vec{X} / X)$
- Integrate $L_{-} \psi_{g}=0$:

$$
\begin{gathered}
{\left[3 N / 2+X \partial_{X}+E_{g} /(\hbar \omega)-m \omega X^{2} / \hbar\right] \psi_{g}(\vec{X})=0} \\
\psi_{g}(\vec{X})=e^{-m \omega X^{2} / 2 \hbar} X^{E_{g} /(\hbar \omega)-3 N / 2} f(\vec{n})
\end{gathered}
$$

- Mapping to scale invariant zero energy free space eigenstates (Tan)
- Gives excited ladders in terms of Laguerre polynomials.
- The hyperangular problem was solved by Efimov for $N=3$.
- This gives the solution to the trapped 3-body unitary problem (Werner, Castin).

MORE DETAILS ON SEPARABILITY FOR $N>\mathbf{2}$

Form of the N-body wavefunction:

$$
\psi(\vec{X})=\psi_{C M}(\vec{C}) \phi(\vec{\Omega}) R^{(5-3 N) / 2} F(R)
$$

- uses separability of the center of mass \vec{C}
- uses separability in internal spherical coordinates $(R, \vec{\Omega})$
- contact conditions put a constraint on $\phi(\vec{\Omega})$ only, for Laplacian on unit sphere of dimension $3 N-4$:

$$
\Delta_{\vec{\Omega}} \phi=-\Lambda \phi
$$

- Effective 2D Schrödinger equation for the radial part:
$-\frac{\hbar^{2}}{2 m} \Delta_{2 D} F(R)+\left(\frac{\hbar^{2} s^{2}}{2 m R^{2}}+\frac{1}{2} m \omega^{2} R^{2}\right) F(R)=E_{\mathrm{int}} F(R)$ with $s^{2}=\Lambda+[(3 N-5) / 2]^{2}$.

PHYSICAL DISCUSSION FOR $N=3$

$$
-\frac{\hbar^{2}}{2 m} \Delta_{2 D} F(R)+\left(\frac{\hbar^{2} s^{2}}{2 m R^{2}}+\frac{1}{2} m \omega^{2} R^{2}\right) F(R)=E_{\mathrm{int}} F(R)
$$

Efimov: s is a root of transcendental equations.
A good case: equal mass fermions

- Proof that all $s^{2} \geq 0$. (Werner and Castin)
- Then one chooses $s \geq 0$. Numerically $s>1$.
- Spectrum $\boldsymbol{E}=(s+1+2 \boldsymbol{q}) \hbar \omega, \boldsymbol{q} \in \mathbb{N}$.

A bad case: bosons

- There is a negative $s^{2}: s_{0}=i \times 1.00624 \ldots$ then Whittaker functions are square integrable solutions $\forall E_{\text {int }} \in$ \mathbb{R} : Hamiltonian not hermitian.
- Proof that all other s^{2} are ≥ 0. (Werner and Castin)

SUGGESTIONS OF EXPERIMENTS

For fermions:

- measure gap Δ
- check/use of scaling transform: breathing mode, measure $g^{(2)}$
- mixture of fermions with different masses

For bosons:

- 3-body universal states for $|a|=\infty$ at the node of an optical lattice
- $|a|=\infty$ bosons in an optical lattice far from a Feshbach resonance.

