Disordered Quantum Systems

Boris Altshuler

Physics Department, Columbia University and NEC Laboratories America

Collaboration: Igor Aleiner , Columbia University

Part 1: Introduction

Part 2: BCS + disorder

Institut henrl POINCARE
 Centre Emile Borel

Finite size quantum physical systems

Atoms
Nuclei
Molecules
Quantum
Dots

Cold gas in a trap ?

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes

Quantum dots

Leo Kouwenhoven and Charles Marcus

PHYSICS WORLD JUNE 1998

Finite number N of electrons:

$$
\hat{H} \Psi_{\alpha}=E_{\alpha} \Psi_{\alpha}
$$

No interactions between electrons \rightarrow Shrodinger eqn in dimensions

In the presence of the interactions between electrons \rightarrow
Shrodinger equation in dN dimensions

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes

I. Without interactions

Random Matrices, Anderson Localization Quantum Chaos

How to deal with disorder?

- Solve the Shrodingequation exactly
- Start with plane waves, introduce the mean free path, and

Classical ($\hbar=0$) Dynamical Systems with d degrees of freedom

Integrable Systems

The variables can be separated and the problem reduces to d onedimensional problems of motion

Examples

1. A ball inside rectangular billiard; $d=2$

- Vertical motion can be separated from the horizontal one
- Vertical and horizontal components of the momentum, are both integrals of motion

2. Circular billiard; $d=2$

- Radial motion can be separated from the angular one
- Angular momentum and energy are the integrals of motion

Classical Dynamical Systems with \boldsymbol{d} degrees of freedom

Integrable Systems

The variables can be separated $\Rightarrow d$ one-dimensional problems $\Rightarrow d$ integrals of motion

Rectangular and circular billiard, Kepler problem, ..., 1d Hubbard model and other exactly solvable models, . .

Chaotic Systems

The variables can not be separated \Rightarrow there is only one integral of motion - energy

Examples

Sinai billiard

Stadium

Kepler problem in magnetic field

Chaotic Systems

The variables can not be separated \Rightarrow there is only one integral of motion - energy

Examples

Sinai billiard

Yakov Sinai

Stadium

Leonid Bunimovich

Johnnes Kepler

Integrable d-dimensional systems

Chaotic d-dimensional systems
d integrals of motion, d quantum numbers

$$
I_{k} \quad k=1,2, \ldots, d
$$

The only conserved quantity is the energy Each eigenstate is characterized only by the eigenvalue of the Hamiltonian

Connection with the inverse problem:

Q: Why original conditions can not be used as the integrals of motion?

A: Not stable

Classical Chaos $\hbar=0$

- Nonlinearities
-Lyapunov exponents
-Exponential dependence on the original conditions
-Ergodicity

Quantum description of any System with a finite number of the degrees of freedom is a linear problem Shrodinger equation

What does it mean Quantum Chaos

RANDOM MATRICES

$N \times N$

ensemble of Hermitian matrices with random matrix element
\boldsymbol{E}_{α}
$v(\varepsilon) \equiv\left\langle\sum_{\alpha} \delta\left(\varepsilon-E_{\alpha}\right)\right\rangle \quad$ - density of states

Gaussian ensembles (matrix elements are normally distributed)

Wigner Semicircle

RANDOM MATRICES

$$
\begin{aligned}
& N \times N \\
& \text { ensemble of Hermitian matrices } \\
& \text { with random matrix element } \\
& \boldsymbol{E}_{\alpha} \quad \text { - spectrum (set of eigenvalues) } \\
& \delta_{1} \equiv\left\langle E_{\alpha+1}-E_{\alpha}\right\rangle=\frac{1}{v} \\
& s_{\alpha} \equiv \frac{E_{\alpha+1}-E_{\alpha}}{\delta_{1}} \\
& P(s) \\
& \text { Level repulsion } \\
& \boldsymbol{P}(\boldsymbol{s}=0)=0 \\
& \boldsymbol{P}(\boldsymbol{s} \ll 1) \propto \boldsymbol{s}^{\beta} \quad \beta=1,2,4 \\
& \text { - distribut ction of spacings } \\
& \text { between th, farest neighbors }
\end{aligned}
$$

Noncrossing rule (theorem)

Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann \& Wigner (v. Neumann J. \& Wigner E. 1929 Phys. Zeit. v.30, p.467)

Usually textbooks present a simplified version of the justification due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. I., 1972 Funct. Anal. Appl.v. 6, p. 94
Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989

RANDOM MATRICES

$N \times N$
 ensemble of Hermitian matrices with random matrix element
 $$
N \rightarrow \infty
$$

Dyson Ensembles

Matrix elements
real
complex
2×2 matrices

Ensemble
$\underline{\beta}$
orthogonal
1
unitary
2
simplectic

Reason for $P(s) \rightarrow 0$ when $s \rightarrow 0$:

$$
\hat{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{12}^{*} & H_{22}
\end{array}\right)
$$

$$
E_{2}-E_{1}=\sqrt{\left(H_{22}-H_{11}\right)^{2}+\left|H_{12}\right|^{2}}
$$

1. The assumption is that the matrix elements are statistically independent. Therefore probability of two levels to be degenerate vanishes.
2. If H_{12} is real (orthogonal ensemble), then for S to be small two statistically independent variables $\left(\left(H_{22}-H_{11}\right)\right.$ and $\left.H_{12}\right)$ should be small and thus $P(s) \propto s \quad \beta=1$

Reason for $P(s) \rightarrow 0$ when $s \rightarrow 0$:

$$
\hat{H}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{12}^{*} & H_{22}
\end{array}\right)
$$

$$
E_{2}-E_{1}=\sqrt{\left(H_{22}-H_{11}\right)^{2}+\left|H_{12}\right|^{2}}
$$

1. The assumption is that the matrix elements are statistically independent. Therefore probability of two levels to be degenerate vanishes.
2. If H_{12} is real (orthogonal ensemble), then for S to be small two statistically independent variables $\left(\left(H_{22}-H_{11}\right)\right.$ and $\left.H_{12}\right)$ should be small and thus $P(s) \propto s \quad \beta=1$
3. Complex H_{12} (unitary ensemble) \Longrightarrow both $\operatorname{Re}\left(\mathrm{H}_{12}\right)$ and $\operatorname{Im}\left(H_{12}\right)$ are statistically independent \Longrightarrow three independent random variables should be small $\Longrightarrow P(s) \propto s^{2} \quad \beta=2$

RANDOM MATRICES

$\boldsymbol{N} \times \boldsymbol{N}$ ensemble of Hermitian matrices with random matrix element

$N \times N$ matrices with random matrix elements. $N \rightarrow \infty$
Spectral Rigidity Level repulsion

$$
\beta=1,2,4
$$

$$
\begin{aligned}
& P(s< \\
& \text { mbles }
\end{aligned}
$$

Dyson Ensembles

Realizations

Matrix elements Ensemble $\boldsymbol{\beta}$
real
complex
orthogonal 1
unitary
2
T-inv potential
broken T-invariance (e.g., by magnetic field)
2×2 matrices simplectic 4 orbital coupling

Main goal is to classify the eigenstates in terms of the quantum numbers

For the nuclear excitations this program does not work

N. Bohr, Nature 137 (1936) 344.

Main goal is to classify the eigenstates in terms of the quantum numbers

For the nuclear excitations this program does not work
E.P. Wigner
(Ann.Math, v.62, 1955)

Study spectral statistics of
a particular quantum system

- a given nucleus

ATOMS

NUCLEI

Main goal is to classify the eigenstates in terms of the quantum numbers

For the nuclear excitations this program does not work
E.P. Wigner
(Ann.Math, v.62, 1955)

Study spectral statistics of
a particular quantum system

- a given nucleus

Random Matrices	Atomic Nuclei
- Ensemble	• Particular quantum system
- Ensemble averaging	- Spectral averaging (over α)

Nevertheless
Statistics of the nuclear spectra are almost exactly the same as the Random Matrix Statistics

Why the random matrix theory (RMT) works so well for nuclear spectra

Why the random matrix

 theory (RMT) works so well for nuclear spectraOriginal answer: became clear that

These are systems with a large number of degrees of freedom, and
therefore the "complexity" is high number of degrees of freedom, and
therefore the "complexity" is high

Later it there exist very "simple" systems with as many as 2 degrees of freedom ($\mathrm{d}=2$), which demonstrate RMT - like spectral statistics

Chaotic Systems

The variables can not be separated \Rightarrow there is only one integral of motion - energy

Examples

Sinai billiard

Yakov Sinai

Stadium

Leonid Bunimovich

Johnnes Kepler

Integrable d-dimensional systems

Chaotic d-dimensional systems
d integrals of motion, d quantum numbers

$$
I_{k} \quad k=1,2, \ldots, d
$$

The only conserved quantity is the energy Each eigenstate is characterized only by the eigenvalue of the Hamiltonian

Connection with the inverse problem:

Q: Why original conditions can not be used as the integrals of motion?

A: Not stable

$\hbar \neq 0 \quad$ Bohigas - Giannoni - Schmit conjecture

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C. Schmit
Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
(Received 2 August 1983)
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.

In
summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are K systems show the same fluctuation properties as predicted by GOE

$\hbar \neq 0 \quad$ Bohigas - Giannoni - Schmit conjecture

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C. Schmit
Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
(Received 2 August 1983)
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.

In
summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are K systems show the same fluctuation properties as predicted by GOE

$\hbar \neq 0 \quad$ Bohigas - Giannoni - Schmit conjecture

Volume 52

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws
O. Bohigas, M. J. Giannoni, and C. Schmit

Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France (Received 2 August 1983)
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are K systems show the same fluctuation properties as predicted by GOE

Chaotic

 classical analog

Wigner- Dyson spectral statistics

No quantum

 numbers except energy
What does it mean Quantum Chaos

?

Two possible definitions

Chaotic classical analog

Wigner -
Dyson-like
spectrum

Classical

Quantum

Poisson

Chaotic

Poisson to Wigner-Dyson crossover

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor
察 Scattering centers, e.g., impurities

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor
察 Scattering centers, e.g., impurities
-As well as in the case of Random Matrices (RM) there is a luxury of ensemble averaging.
-The problem is much richer than RM theory
-There is still a lot of universality.

Anderson
 localization (1956)
 At strong enough
 disorder all eigenstates are localized in space

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar
Department of Physics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

Anderson Insulator
Anderson Metal

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor
准 Scattering centers, e.g., impurities

Models of disorder:
Randomly located impurities

$$
U(\vec{r})=\sum_{i} u\left(\vec{r}-\vec{r}_{i}\right)
$$

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor
准 Scattering centers, e.g., impurities

Models of disorder:

 Randomly located impurities$$
U(\vec{r})=\sum_{i} u\left(\vec{r}-\vec{r}_{i}\right)
$$

White noise potential $\quad u(\vec{r}) \rightarrow \lambda \delta(\vec{r}) \quad \lambda \rightarrow 0 \quad c_{i m} \rightarrow \infty$
Anderson model - tight-binding model with onsite disorder
Lifshits model - tight-binding model with offdiagonal disorder
-
\square

Anderson Model

$\otimes \otimes$ Lattice - tight binding model $\otimes \otimes \otimes \cdot$ Onsite energies ε_{i} - random $\theta^{*} \theta^{*}+$ - Hopping matrix elements $I_{i j}$
$-W<\varepsilon_{i}<W$ uniformly distributed

neighbors otherwise

Anderson Transition

$I<I_{c}$

Insulator
All eigenstates are localized Localization length ξ

$$
\underline{I} \quad \underset{\text { Metal }}{ }
$$

There appear states extended all over the whole system

Localization of single-electron wave-functions:

$$
\left[-\frac{\boldsymbol{\nabla}^{2}}{2 m}+U(\boldsymbol{r})-\epsilon_{F}\right] \psi_{\alpha}(\boldsymbol{r})=\xi_{\alpha} \psi_{\alpha}(\boldsymbol{r})
$$

Localization of single-electron wave-functions:

$$
\left[-\frac{\boldsymbol{\nabla}^{2}}{2 m}+U(\boldsymbol{r})-\epsilon_{F}\right] \psi_{\alpha}(\boldsymbol{r})=\xi_{\alpha} \psi_{\alpha}(\boldsymbol{r})
$$

$d=1$; All states are localized $d=2$; All states are localized
$d>2$; Anderson transition

Anderson Transition

$I<I_{c}$

Insulator

All eigenstates are localized Localization length ξ

The eigenstates, which are localized at different places will not repel each other

Poisson spectral statistics

$I>I_{c}$

Metal

There appear states extended all over the whole system

Wigner - Dyson spectral statistics

Zharekeschev \& Kramer.
Exact diagonalization of the Anderson model
3 D cube of volume $20 \times 20 \times 20$

What does it mean Quantum Chaos

Two possible definitions

Chaotic classical analog
 Wigner -Dyson-like
 spectrum

Are the two definitions equivalent?

Maybe not because of the localizationt

Quantum particle in a random potential (Thouless, 1972)

Energy scales

1. Mean level spacing

$$
\delta_{1}=1 / v \times L^{d}
$$

2. Thouless energy

$$
\boldsymbol{E}_{T}=\boldsymbol{h D} / L^{2}
$$

D is the diffusion const
\boldsymbol{E}_{T} has a meaning of the inverse diffusion time of the traveling through the system or the escape rate (for open systems)

$$
\begin{gathered}
\text { dimensionless } \\
\text { Thouless } \\
\text { conductance }
\end{gathered} \quad \boldsymbol{g}=\boldsymbol{G} \boldsymbol{h} / \boldsymbol{e}^{2}
$$

Thouless Conductance and One-particle Spectral Statistics

\uparrow Localized states Insulator

Poisson spectral statistics

Extended states Metal

Wigner-Dyson spectral statistics

Quantum Dots with Thouless conductance g

The same statistics of the random spectra and oneparticle wave functions (eigenvectors)

Scaling theory of Localization

(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

$$
g=E_{T} / \delta_{1} \quad \begin{gathered}
\text { Dimensionless Thouless } \\
\text { conductance }
\end{gathered} \quad g=\boldsymbol{G} \boldsymbol{h} / \boldsymbol{e}^{2}
$$

$$
L=2 L=4 L=8 L \ldots
$$

without quantum corrections

$$
\boldsymbol{E}_{T} \propto \boldsymbol{L}^{-2} \quad \boldsymbol{\delta}_{I} \propto \boldsymbol{L}^{-d}
$$

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{T}}=\mathbf{E}_{\mathrm{T}} \mathbf{E}_{\mathrm{T}} \mathbb{E}_{\mathrm{T}} \\
& \delta_{1} \delta_{1} \delta_{1} \delta_{1} \\
& \mathrm{~g}-\mathrm{g}-\mathrm{g}-\mathrm{g}
\end{aligned}
$$

$$
\frac{d(\log g)}{d(\log L)}=\beta(g)
$$

Metal - insulator transition in 3D All states are localized for $\boldsymbol{d}=1,2$

Anderson transition in terms of pure level statistics

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Disordered Systems:

$$
\begin{array}{lc}
\boldsymbol{E}_{\boldsymbol{T}}>\delta_{1} ; & \boldsymbol{g}>1
\end{array} \begin{aligned}
& \begin{array}{l}
\text { Anderson metal; } \\
\text { Wigner-Dyson spectral } \\
\text { statistics }
\end{array} \\
& \boldsymbol{E}_{\boldsymbol{T}}<\delta_{1} ;
\end{aligned} \quad \boldsymbol{g}<1 \begin{aligned}
& \text { Anderson insulator; } \\
& \text { Poisson spectral statistics }
\end{aligned}
$$

-Is it a generic scenario for the

- Wigner-Dyson to Poisson crossover

Speculations

Consider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

- Does Anderson localization provide?

 Dyson to Poisson crossoverConsider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

Weak enough hopping - Localization - Poisson Strong hopping - transition to Wigner-Dyson

The very definition of the localization is not invariant - one should specify in which space the eigenstates are localized.

Level statistics is invariant:

Poissonian statistics

Wigner -Dyson statistics
basis the eigenfunctions are extended

Diffusion and Localization in Chaotic Billiards

Fausto Borgonovi, ${ }^{1,3,4}$ Giulio Casati, ${ }^{2,3,5}$ and Baowen $\mathrm{Li}^{6,7}$
${ }^{1}$ Dipartimento di Matematica, Università Cattolica, via Trieste 17, 25121 Brescia, Italy
${ }^{2}$ Università di Milano, sede di Como, Via Lucini 3, Como, Italy
${ }^{3}$ Istituto Nazionale di Fisica della Materia, Unità di Milano, via Celoria 16, 22100, Milano, Italy
${ }^{4}$ Instituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
${ }^{5}$ Ins tituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
${ }^{6}$ Department of Physics and Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Hong Kong
${ }^{a 7}$ Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000 Maribor, Slovenia (Received 29 July 1996)

Localization and diffusion in the angular momentum
 space

$\varepsilon \equiv \frac{a}{R}{ }_{\mathbf{R}}^{{ }^{\mathbf{R + a}}} \quad \varepsilon>0 \begin{aligned} & \text { Chaotic } \\ & \text { stadium }\end{aligned}$
$\varepsilon \rightarrow 0$ Integrable circular billiard
Angular momentum is the integral of motion
$\hbar=0 ; \quad \varepsilon \ll 1$
Diffusion in the angular momentum space
$D \propto \varepsilon^{5 / 2}$

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila \& G.Montambaux

 Europhysics Letters, v.22, p.537, 19931D Hubbard Model on a periodic chain
$H=t \sum_{i, \sigma}\left(c_{i, \sigma}^{+} c_{i+1, \sigma}+c_{i+1, \sigma}^{+} c_{i, \sigma}\right)+U \sum_{i, \sigma} n_{i, \sigma} n_{i,-\sigma}+V \sum_{i, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{i+1, \sigma^{\prime}}$
$V=0 \begin{gathered}\text { Hubbard } \\ \text { model }\end{gathered}$ integrable
$V \neq 0 \quad \begin{array}{cc}\text { extended } \\ \text { Hubbard }\end{array}$
nonintegrable

Onsite interaction

n. neighbors interaction

12 sites
3 particles
Zero total spin
Total momentum $\pi / 6$

Finite number N of electrons:

$$
\hat{H} \Psi_{\alpha}=E_{\alpha} \Psi_{\alpha}
$$

No interactions between electrons \rightarrow Shrodinger eqn in dimensions
Integrable system - each energy is conserved
Poissonian many-body spectrum
In the presence of the interactions between electrons \rightarrow
Shrodinger eqn in dN dimensions

Finite number N of electrons:

$$
\hat{H} \Psi_{\alpha}=E_{\alpha} \Psi_{\alpha}
$$

No interactions between electrons \rightarrow Shrodinger eqn in dimensions
Integrable system - each energy is conserved Poissonian many-body spectrum

In the presence of the interactions between electrons \rightarrow Shrodinger eqn in dN dimensions

Q:Can interaction between the particles drive this system into chaos and make it ergodic?

Random Matrics statistics of nuclear spectra

II. With interactions

Fermi Liquid and Disorder Zero Dimensional Fermi Liquid

Fermi Liguid

- Fermi statistics
- Low temperatures
- Not too strong interactions
- Translation invariance

What cloes jit mean?

- Fermi statistics
- Low temperatures
- Not too strong interactions
- Translation invariance

It means that

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers - momentum, spin $1 / 2$, charge e
b) decay rate is small as compared with the excitation energy
2. Substantial renormalizations. For example, in a Fermi gas

$$
\partial n / \partial \mu, \quad \gamma=c / T, \quad \chi / g \mu_{B}
$$

are all equal to the one-particle density of states. These quantities are different in a Fermi liquid

Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T^{2} :
L.D. Landau \& I.Ya. Pomeranchuk "To the properties of metals at very
low temperatures"; Zh.Exp.Teor.Fiz., 1936, v.10, p. 649

The increase of the resistance caused by the interaction between the electrons is proportional to T^{2} and at low temperatures exceeds the usual resistance, which is proportional to T^{5}.
... the sum of the moments of the interaction electrons can change by an integer number of the periods of the reciprocal lattice. Therefore the momentum increase caused by the electric field can be destroyed by the interaction between the electrons, not only by the thermal oscillations of the lattice.

Signatures of the Fermi - Liquid state ?!

1. Resistivity is proportional to T^{2} :
L.D. Landau \& I.Ya. Pomeranchuk "To the properties of metals at very low temperatures"; Zh.Exp.Teor.Fiz., 1936, v.10, p. 649
Umklapp electron - electron scattering dominates the charge transport (?!)
2. Jump in the momentum distribution function at $T=0$.

2a. Pole in the one-particle Green function

$$
G(\varepsilon, \vec{p})=\frac{Z}{i \varepsilon_{n}-\xi(\vec{p})}
$$

$$
\text { Fermi liquid }=0<\boldsymbol{Z}<1 \quad \text { (?!) }
$$

Landau Fermi - Liquid theory

Momentum
 \vec{p}

Momentum distribution $\quad n(\vec{p})$

Total energy
$E\{n(\vec{p})\}$
Quasiparticle energy
$\xi(\vec{p}) \equiv \delta E / \delta n(\vec{p})$
Landau f-function

$$
f\left(\vec{p}, \vec{p}^{\prime}\right) \equiv \delta \xi(\vec{p}) / \delta n\left(\vec{p}^{\prime}\right)
$$

Can Fermi - liquid survive without the momenta - Does it make sense to speak about the Fermi liquid state in the presence of a quenched disorder

- Does it make sense to speak about the Fermi -
- liquid state in the presence of a quenched disorder

1. Momentum is not a good quantum number - the momentum uncertainty is inverse proportional to the elastic mean free path, \boldsymbol{l}. The step in the momentum distribution function is broadened by this uncertainty

Q:

1. Momentum is not a good quantum number - the momentum uncertainty is inverse proportional to the elastic mean free path, \boldsymbol{l}. The step in the momentum distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp processes and thus does not behave as T^{2}
3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged oneparticle Green function even without interactions does not have a pole as a function of the energy, ε. The residue , Z, makes no sense.

Nevertheless even in the presence of the disorcler
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes

Finite
 System
 Thouless energy E_{T}

$$
\varepsilon \ll E_{T} \xrightarrow{\text { def }}>0 D
$$

At the same time, we want the typical energies, ε, to exceed the mean level spacing, δ_{1} :

$$
\delta_{1} \ll \varepsilon \ll E_{T}
$$

$$
g \equiv \frac{E_{T}}{\delta_{1}} \gg 1
$$

JW0-Body Interactions

Set of one particle states. σ and α label correspondingly spin and orbit.

$$
\hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma} \quad \hat{H}_{\mathrm{int}}=\sum_{\substack{\alpha, \beta, \gamma, \delta \\ \sigma, \sigma^{\prime}}} M_{\alpha \beta \gamma \delta} a_{\alpha, \sigma}^{+} a_{\beta, \sigma^{\prime}}^{+} a_{\gamma, \sigma} a_{\delta, \sigma^{\prime}}
$$

\mathcal{E}_{α}-one-particle orbital energies
$M_{\alpha \beta \gamma \delta}$-interaction matrix elements

Nuclear $\quad \varepsilon_{\alpha} \quad$ are taken from the shell model
Physics $\quad M_{\alpha \beta \gamma \delta}$ are assumed to be random

Quantum
$\varepsilon_{\alpha} \quad$ RANDOM; Wigner-Dyson statistics
Dots

$$
M_{\alpha \beta \gamma \delta} \text { ?? ? ? ? ? ? ? }
$$

Thouless Conductance and One-particle Quantum Mechanics

Localized states Insulator

Poisson spectral statistics

Extended states Metal

Wigner-Dyson spectral statistics

$N \times N$
 Random Matrices

The same statistics of the random spectra and oneparticle wave functions (eigenvectors)

Matrix Elements

$$
\hat{H}_{\mathrm{int}}=\sum_{\substack{\alpha, \beta, \gamma, \delta, \delta \\ \sigma, \sigma^{\prime}}} M_{\alpha \beta \gamma \delta} a_{\alpha, \sigma}^{+} a_{\beta, \sigma^{\prime}}^{+} a_{\gamma, \sigma} a_{\delta, \sigma^{\prime}}
$$

Diagonal - $\alpha, \beta, \gamma, \delta$ are equal pairwise

Matrix Elements $M_{\alpha \beta \gamma \delta}$ $\alpha=\gamma$ and $\beta=\delta$ or $\alpha=\delta$ and $\beta=\gamma$ or $\alpha=\beta$ and $\gamma=\delta$

Offoliagonal - otherwise

It turns out that

- Diagonal matrix elements are much bigger than the offdiagonal ones

$$
M_{\text {diagonal }} \gg M_{\text {offdiagonal }}
$$

in the limit $g \rightarrow \infty$

- Diagonal matrix elements in a particular sample do not fluctuate - selfaveraging

Toy model:

$$
U(\vec{r})=\frac{\lambda}{v} \delta(\vec{r})
$$

Short range e-e interactions
λ is dimensionless coupling constant V is the electron density of states

$$
M_{\alpha \beta \gamma \delta}=\frac{\lambda}{v} \int d \vec{r} \psi *_{\alpha}(\vec{r}) \psi *_{\beta}(\vec{r}) \psi_{\gamma}(\vec{r}) \psi_{\delta}(\vec{r})
$$

$\Psi_{\alpha}(\boldsymbol{x})$ is a random $\begin{aligned} & \text { function that }\end{aligned}$ rapidly oscillates

$$
\left|\psi_{\alpha}(x)\right|^{2} \geq 0
$$

$$
\psi_{\alpha}(x)^{2} \geq 0 \begin{aligned}
& \text { as long as } \\
& \\
& \text { is preserviaced }
\end{aligned}
$$

In the limit

$g \rightarrow \infty$

- Diagonal matrix elements are much bigger than the offdiagonal ones

$$
M_{\text {diagonal }} \gg M_{\text {offdiagonal }}
$$

- Diagonal matrix elements in a particular sample do not fluctuate - selfaveraging

$$
\begin{gathered}
M_{\alpha \beta \alpha \beta}=\frac{\lambda}{v} \int d \vec{r}\left|\psi_{\alpha}(\vec{r})\right|^{2}\left|\psi_{\beta}(\vec{r})\right|^{2} \\
\left|\psi_{\alpha}(\vec{r})\right|^{2} \Rightarrow \frac{1}{\text { volume }}
\end{gathered}
$$

$$
M_{\alpha \beta \alpha \beta}=\lambda \delta_{1}
$$

More general: finite range interaction potential $U(\vec{r})$

$$
\left.M_{\alpha \beta \alpha \beta}=\frac{\lambda}{v} \int\left|\psi_{\alpha}\left(\vec{r}_{1}\right)\right|^{2} \right\rvert\, \psi_{\beta}\left(\vec{r}_{2}\right)^{2} U\left(\vec{r}_{1}-\vec{r}_{2}\right) d \vec{r}_{1} d \vec{r}_{2}
$$

The same conclusion

Universal (Random Matrix) limit - Random Matrix symmetry of the correlation functions:

All correlation functions are invariant under arbitrary orthogonal transformation:

$$
\tilde{\psi}_{\mu}(\vec{r})=\sum_{V} \int d \vec{r}_{1}^{\prime}{ }_{\mu}^{\prime}\left(\vec{r}, \vec{r}_{1}\right) \psi_{\nu}\left(\vec{r}_{1}\right)
$$

$$
\int \operatorname{dr}_{1} O_{\mu}^{\prime}\left(\vec{r}, \vec{r}_{1}\right) O_{v}^{\eta}\left(\vec{r}_{1}, \vec{r}^{\prime}\right)=\delta_{\mu \nu} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

There are only three operators, which are quadratic in the fermion operators a^{+}, a, and invariant under $R M$ transformations:

$$
\begin{aligned}
& \hat{n}=\sum_{\alpha, \sigma} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma} \\
& \hat{S}=\sum_{\alpha, \sigma_{1}, \sigma_{2}} a_{\alpha, \sigma_{1}}^{+} \vec{\sigma}_{\sigma_{1}, \sigma_{2}} a_{\alpha, \sigma_{2}} \\
& \hat{K}^{+}=\sum_{\alpha} a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+}
\end{aligned}
$$

total number of particles
total spin
????

Charge conservation (gauge invariance)
 $\hat{K} \square \hat{K}^{+} \hat{K}^{+}$

Invariance under rotations in spin space $\triangle \hat{S} \square \hat{S}^{2}$

Therefore, in a very general case
$\hat{H}_{\text {int }}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{K}^{+} \hat{K}$.

Only three coupling constants describe all of the effects of e-e interactions

In a very general case only three coupling constants describe all effects of electron-electron interactions:

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\hat{H}_{i n t}
$$

$$
\hat{H}_{i n t}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{K}^{+} \hat{K} .
$$

I.L. Kurland, I.L.Aleiner \& B.A., 2000

See also
P.W.Brouwer, Y.Oreg \& B.I.Halperin, 1999
H.Baranger \& L.I. Glazman, 1999

H-Y Kee, I.L.Aleiner \& B.A., 1998

In a very general case only three coupling constants describe all effects of electron-electron interactions:

$$
\begin{aligned}
& \hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\hat{H}_{i n t} \\
& \hat{H}_{i n t}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{K}^{+} \hat{K}
\end{aligned}
$$

For a short range interaction with a coupling constant λ

$$
E_{c}=\frac{\lambda \delta_{1}}{2} \quad J=-2 \lambda \delta_{1} \quad \lambda_{B C S}=\lambda \delta_{1}(2-\beta)
$$

where δ_{1} is the one-particle mean level spacing

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}}
$$

$$
\hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}
$$

$$
\hat{H}_{i n t}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{K}^{+} \hat{K} .
$$

Only one-particle part of the Hamiltonian, H_{0}, contains randomness

$$
\begin{gathered}
\hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}} \\
\hat{H}_{i n t}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha} \\
\hline \hat{K}^{+} \hat{K}
\end{gathered}
$$

E determines the charging energy (Coulomb blockade)
J describes the spin exchange interaction
$\lambda_{\text {BCS }} \quad \begin{aligned} & \text { determines effect of superconducting-like } \\ & \text { pairing }\end{aligned}$

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}} \quad \hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}
$$

$$
\hat{H}_{i n t}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{K}^{+} \hat{K}
$$

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn't it a Fermi liquid?

Fermi liquid behavior follows from the fact that different wave functions are almost uncorrelated

