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Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots

Coldgasinatrap ?



Realizations:

» Metallic clusters

Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e=e Interactions

* Gate determined confinement in 2D gases (e.9. GaAs/AlGaAs)
 Carbon nanotubes



Quantum dots

Leo Kouwenhoven and Charles Marcus

PEIYEICS WORLD  TUNE 1883

0.5 um
-— »

draln

/

ol

= sounce

sile gRte




Finite number N of electrons:

HY =E ¥

No interactions between electrons =
Shrodinger eqn in d dimensions

In the presence of the interactions
between electrons -

Shrodinger equation in dN dimensions



Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e-2.l 10NS for a while

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.9. GaAs/AlGaAs)

» Carbon nanotubes



.
|. Without interactions

Random Matrices,
Anderson Localization

Quantum Chaos




1. Disorder (x — impurities)

2. Complex geometry

How to deal with disorder?

*Solve the Shrodinger—equation exactE'

- Start with plane waves, introduce the
mean free path, and . . .

How to take quantum
Interference into account =




Integrable Chaotic



Classical ( ) Dynamical Systems with  degrees of freedom

Integrable The variables can be d integrals

separated and the problem l=> :
reduces to d one- of motion

dimensional problems
Examples
1. A ball inside rectangular billiard; d=2

« \/ertical motion can be * Vertical and horizontal

separated from the components of the
horizontal one momentum, are both

Integrals of motion

Systems

2. Circular billiard: d=2

 Radial motion can be  « Angular momentum

separated from the and energy are the
angular one Integrals of motion



Classical Dynamical Systems with  degrees of freedom

|gIETe| 10l (BB The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectan%ular and circular billiard, Kepler problem, .
1d Hubbard model and other exactly solvable models, .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples

Kepler problem
In magnetic field

Sinal billiard

Stadium



Chaotic The variables can not be separated = there is only one
Systems Integral of motion - energy

Examples T B

Kepler problem
In magnetic field

TN OSSR

Yékov Sinai' Leonid Bunimovich Johnnes Kepler



Integrable d integrals of motion, d quantum numbers

d-dimensional

systems e k=12,..d

Chaotic The only conserved quantity is the energy
o Rl [e]a-IM Each eigenstate is characterized only by
systems the eigenvalue of the Hamiltonian

Connection with the inverse problem:

e Why original conditions can not be
used as the integrals of motion ?

A Not stable



e Nonlinearities

Classical Chaos L T

eExponential dependence on
the original conditions

*Ergodicity
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Quantum description of any System
with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

()’ What does it mean Quantum Chaos 7



RANDOM MATRICES

ensemble of Hermitian matrices

N xN with random matrix element N — 0
E, - spectrum (set of eigenvalues)
v(g)s <Z5(g -E, )> - density of states

< ...... > - ensemble averaging

Gaussian ensembles (matrix N =

elements are normally distributed) )
2V (€)

Wigner Semicircle




RANDOM MATRICES

ensemble of Hermitian matrices
N xN with random matrix element N — 0
E

- spectrum (set of eigenvalues)

- mean level spacing

_1
y

ction of spacings

between t arest neighbors

Spectral Rigidity [ZEE )=

EVEREIN S P(s<<l)cs”  p=1,2,4



Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)

Usually textbooks present a simplified version of the justification
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. |., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989



RANDOM MATRICES

ensemble of Hermitian matrices
N xN with random matrix element N —

Dyson Ensembles

Matrix elements Ensemble B
real orthogonal 1
complex unitary 2
2 x 2 matrices simplectic 4



B E

Reason for P(S) — 0 when s> 0:

1.

(L H
alih E,—E, = (Hg — Hyy ) +|Hyf

\Hiz Ha, b anall

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hy5- Hy1) and Hy,)
should be small and thus P(s)ocs L =1



Reason for P(S) — 0 when s> 0:

B E
I

1.

(H H
. g E2—E1=\/(H22—H11)2+|H12|2

CLOB N

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hy5- Hy1) and Hy,)
should be small and thus P(s)ocs L =1

Complex H;, (unitary ensemble) == both Re(H,,) and

Im(H,,) are statistically independent == three mdependem‘
random variables should be small =» P(S) oc 52 L =2
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RANDOM MATRICES

ensemble of Hermitian matrices
N xN with random matrix element

N — 0

¢ —uD



N x IN matrices with random matrix elements. /N — o0
Spectral Rigidity B _
Level repulsion P(S << 1) oC S 13—11 2,4

Dyson Ensembles Realizations

Matrix elements Ensemble £

real orthogonal 1  T-Inv potential

2 x2 matrices simplectic 4 T-inv, but with spin-
orbital coupling



Main qgoal is to classify the eigenstates
ATOMS e 'rer'?ns of the quan’rt}’m numb%rs

For the nuclear excitations this

NUCLEI program does not work

N. Bohr, Nature
137 (1936) 344.



Main qgoal is to classify the eigenstates
ATOMS e Tergns of the quan’rt}’m numb%rs

For the nuclear excitations this
NUCLEI program does not work

Study spectral statistics of
a particular quantum system
- a given nucleus
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Main qgoal is to classify the eigenstates
ATOMS e Ter'gns of the quan’ﬂ}'m numb%r's

For the nuclear excitations this
NUCLEI program does not work

Study spectral statistics of
a particular quantum system
- a given nucleus

Random Matrices Atomic Nuclel
 Ensemble e Particular quantum system
e Ensemble averaging e Spectral averaging (over )

NIV TSN Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics




Why the random matrix
Q " theory (RMT) works so well ?

for nuclear spectra =



Why the random matrix

Q " theory (RMT) works so well

for nuclear spectra m

Original These are systems with a large
g number of degrees of freedom, and
dNSWEr.  therefore the “complexity” is high

Later It there exist very “simple” systems
with as many as 2 degrees of

became freedom (d=2), which demonstrate

Clearthat  RMT - like spectral statistics



Chaotic The variables can not be separated = there is only one
Systems Integral of motion - energy

Examples T B

Kepler problem
In magnetic field

TN OSSR

Yékov Sinai' Leonid Bunimovich Johnnes Kepler



Integrable d integrals of motion, d quantum numbers

d-dimensional

systems e k=12,..d

Chaotic The only conserved quantity is the energy
o Rl [e]a-IM Each eigenstate is characterized only by
systems the eigenvalue of the Hamiltonian

Connection with the inverse problem:

e Why original conditions can not be
used as the integrals of motion ?

A Not stable



Bohigas — Giannoni — Schmit conjecture

VorumMme 52 2 JﬁNUARY 1934

Numbser 1

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C, Schmit
Division de Physigue Theovique, Institut de Physique Nucleaive, F-91406 Orsay Cedex, France

(Received 2 August 1983)

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with

the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In
summary, the question at issue is to prove or dis-

prove the following conjecture: Spectra of time-
reversal—-invariant systems whose classical an-

alogs are K systems show the same fluctuation
properties as predicted by GOE



Bohigas — Giannoni — Schmit conjecture

VorumMme 52 2 JﬁNUARY 1934

Numbser 1

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C, Schmit
Division de Physique Theovique, Institut de Physique Mc!emiw F=9l406 Orsay Cedex, France

{Received 2 August 1983)

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with

the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In
summary, the question at issue is to prove or dis-

prove the following conjecture: Spectra of time-
reversal—-invariant systems whose classical an-
alogs are K systems show the same fluctuation

properties as predicted by GOE



Bohigas — Glannoni — Schmit conjecture

VoLuMmE 52 2 JANUARY 1984 NumMBER | Ch .
aotic
Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws C I aSS i Cal an aI O g

O. Bohigas, M, J. Giannoni, and C. Schmit
Division de Physique Théovigue, Institut de Physique Nucléaive, F-91406 Orsay Cedex, France
(Received 2 August 1983}

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In
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(). What does it mean Quantum Chaos 7

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

%
Integrable <—= Poisson

) :
* Wigner-

Chaotic Dyson

0 0.5 1 1.5 2 2.5 3



Poisson to Wignher-Dyson crossover

Wigner
Poisson




Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities




Poisson to Wignher-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

*As well as in the case of Random
Matrices (RM) there is a luxury
of ensemble averaging.

‘The problem is much richer than
RM theory

*There is still a lot of universality.

Anderson At strong enough
disorder all eigenstates

localization (1956) are localized in space



VoLUME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and 8. Sridhar

Department of Plivsics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

f=3.04 GHz f=7.33 GHz

(b)

Anderson Insulator Anderson Metal



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

Models of disorder: .
Randomly located impurities “'"- 2.0(F-1)




Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

Models of disorder: S
Randomly located impurities (7 =2u("=F)
White noise potential u(f)—-15(f) 2150 ¢,

Anderson model - tight-binding model with onsite disorder

Lifshits model - tight-binding model with offdiagonal disorder



Anderson e Lattice - tight binding model
\i[e) d e| * Onsite energies E&; - random

 Hopping matrix elements 1 ij

I l and l are nearest
neighbors

uniformly distributed 0 otherwise

Anderson Transition

I<L I>L
Insulator Metal

All eigenstates are localized There appear states extended

Localization length g all over the whole system



Localization of single-electron wave-functions:
VZ

2m
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Localization of single-electron wave-functions:

2 _
VL U(r) e | Galr) = Eatia(r)

Ay (z) extended
—1 d=1; All states are localized

IR Amﬂiﬁ(\f\/\/\ X

V\/\x d=2; All states are localized

<
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T . G d>2; Anderson transition

localized



Anderson: Transition
1<I 1>1

C C
Insulator Metal

All eigenstates are localized There appear states extended

Localization length g all over the whole system

The eigenstates, which are Any two extended

localized at different places eigenstates repel each other
will not repel each other

d d

Poisson spectral statistics Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20
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What does it mean Quantum Chaos

Two possible definitions

Chaotic  —"— Wigner -
classical Dyson-like
analog ~— spectrum

Arertnertwoerdefinitionssequivaleni?

Maybernoit becalseroiinerocalization



Quantum particle ina random potential (Thouless, 1972)
Energy scales

1. Mean level spacing

| s
i 1 L isthe system size;

d IS the number of
dimensions

D IS the diffusion const

E 7 has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E,/8,  Toiess  g=Ghe

conductance



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
b Insulator Metal &
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots

with Thouless
conductance g

N xN
Random Matrices

The same statistics of the
random spectra and one-
particle wave functions
(eigenvectors)




Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

g=E,/8, OOl o= G
L=2L=4L =8L....

without guantum corrections

E,ccL? 6, cL”




unstable
fixed point

Metal — insulator transition in 3.D
All states are localized for d=1,2
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Anderson transition in terms of

pure level statistics

]. w w
metal, W=5 =
critical, 16.5 =

Scaling of level spacing variance

insulator, 100 - 0.7 F  Linear size of 3D cube

Wigner

Var 5

0.2

12 14 16 15 20

disorder W



VoLUME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and 8. Sridhar

Department of Plivsics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

Integrable Chaotic
All chaotic
systems
Square f'esemble Smal
. billiard
Al each other.

All integrable
systems are

integrable in _ ~S%
their own way extended

Disordered
localized




Anderson metal,;
E T > 51, g > 1 Wigner-Dyson spectral
statistics

Disordered

Systems:

Anderson insulator;
Poisson spectral statistics

E.<o; g<l1

= Is it a generic scenario for the P,
= Wigner-Dyson to Poisson crossover *

Speculations

Consider an integrable system. Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of quantum numbers. The
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements
of the hopping between different sites (Anderson model !?)



= a generic scenario for the Wigner-
Dyson to Poisson crossover

Q . Does Anderson localization provide

Consider an integrable system. Each state is
characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum
numbers. The whole set of the states forms a lattice in

this space.

A perturbation that violates the integrability provides
matrix elements of the hopping between different sites
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson



The very definition of the localization is
not invariant - one should specify in which
space the eigenstates are localized.

Level statistics is invariant:
Poissonian basis where the |
statistics eigenfunctions are localized

Wianer -Dvson basis the eigenfunctions
Sta%istics . \v/ are extended




Eanpe i I v

Low concentration Electrons are localized on \@[

of donors == donors = Poisson \-f

Higher donor e, Electronic states are \-f \-f
concentration extended = Wigner-Dyson

Example 2 TWO

. mn
integrals p,=—;

Lattice in the Iai:nceo(nssutgﬁtce)
momentum space energy Ideal billiard - localization in the
Pyl o seccc00en momentum space
O000O0O0O0O."000 VO C> POISSO”
0000000 0O0O0O0OL MNOO0OO0OO
20000000000k Deformation or - delocalization in the
smooth random  momentum space

.............w.px

potential = Wigner-Dyson
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Diffusion and Localization in Chaotic Billiards
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D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

H - tZ(C:,_O'Ci+1,G r Ci-:—l,aci,a)_l_u Zni,ani,—a +V Zni,ani+l,a'
Wez Wez I,0,0'
V =0 Hubbard ntegrable
model J . Onsite n. neighbors
extended _ Interaction Interaction
V #0 Hubbard nonintegrable
model
1 T T e e
3 particles
Zero total spin
Total momentum =/6 X
Oo“”iaulél's _30'1é s




Finite number N of electrons:

HY =E ¥

No interactions between electrons -
Shrodinger eqn in d dimensions

Integrable system - each energy is conserved
Poissonian many-body spectrum

In the presence of the interactions
between electrons -
Shrodinger egn in dN dimensions



Finite number N of electrons:

HY =E ¥

No interactions between electrons =
Shrodinger eqn in d dimensions

Integrable system - each energy is conserved
Poissonian many-body spectrum

In the presence of the interactions
between electrons -
Shrodinger egn in dN dimensions

Q.Can interaction between the particles drive 5
‘this system into chaos and make it ergodic :

Random Matrics statistics of nuclear spectra



...
'II.With interactions
e
Fermi Liquid and Disorder
Zerlili)ilnensional Fermi Liquid




Eermi Liguia

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance




Fermi statistics
Low temperatures —

Not too strong interactions
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin 2 , charge e

b) decay rate is small as compared with the excitation energy
2. Substantial renormalizations. For example, in a Fermi gas

onfou, y=c/T, x/0us

are all equal to the one-particle density of states.
These quantities are different in a Fermi liguid



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to 7%
L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very

low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

..The increase of the resistance caused by the interaction between
the electrons is proportional to 77 and at low temperatures exceeds
the usual resistance, which is proportional to 7°.

.. the sum of the moments of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice.
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by
the thermal oscillations of the lattice.



Signatures of the Fermi - Liquid state
1. Resistivity Is proportional to T?

L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649
Umklapp electron — electron scattering dominates the

charge transport (?!) n(p

2. Jump in the momentum distribution
function at 7=0.

2a.  Pole in the one-particle Green function

. /
B

Fermi liquid = 0<Z<I (?!)




Landau Fermi - Liquid theory

Momentum p

Momentum distribution  n(p)

Total energy En(p)}
Quasiparticle energy £(p)= E/on(p)
Landau f-function f(p,p')=0E(p)/on(p’)

Does it make sense to speak about the Fermi -

_Can Fermi - liquid survive without the momenta f)
g liquid state in the presence of a quenched disorder "



" Does it make sense to speak about the Fermi — ?
= liquid state in the presence of a quenched disorder =

1. Momentum is not a good quantum number — the
momentum uncertainty is inverse proportional to the
elastic mean free path, I. The step in the momentum
distribution function is broadened by this uncertainty



" Does it make sense to speak about the Fermi — ?
= liquid state in the presence of a quenched disorder =

1. Momentum is not a good quantum number — the
momentum uncertainty is inverse proportional to the
elastic mean free path, I. The step in the momentum
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as 1 Z

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-

particle Green function even without interactions does not have a pole as a
function of the energy, & The residue , Z, makes no sense

cll

Excitations are similar to the excitations in a disordered Fermi-gas.

orcer

LM
(‘D

Neverineless even in tne presence of th

L’D

|. Small decay rate
ll. Substantial renormalizations




Quantum Dot

1. Disorder (ximpurities)}‘ghaotic

ne-particle
motion

2. Complex geometry

3. e-e Interactions

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.q. GaAs/AlGaAs)

» Carbon nanotubes



At the same time, we want the typical energies, &, to
exceed the mean level spacing, 0, :

Pl Ty G




TWO-B()dy Set of one particle states. &
Interactions and o label correspondingly

spin and orbit.

&, -one-particle orbital energies M opys -interaction matrix elements

&, are taken from the shell model
Nuclear
Physics M, are assumed to be random
€q RANDOM: Wigner-Dyson statistics
Quantum 1 y
Dots I\/Iaﬂyg DNNNNHNH



Thouless Conductance and
One-particle Quantum Mechanics

Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots with
dimensionless

conductance g

N xN

Random Matrices

The same statistics of the
random spectra and one-
particle wave functions <G4

(eigenvectors)



Vatrix Elements

Diagonal - o, 37,0 are equal pairwise
Matrix a=y and =5 or a=5 and =y or a=f and y=0

Elements = @#°
Offdiagonal - otherwise

» Diagonal matrix elements are much bigger
It turns than the offdiagonal ones

O Ut t h at M diagonal >> M offdiagonal

in the limit Claed I Diagonal matrix elements in a particular
sample do not fluctuate - selfaveraging




ey moedel: Short range e-e interactions

N _ A o\ A is dimensionless coupling constant
UF)==o(F) =~ |
v V Is the electron density of states

v, (F)
one-particle
eigenfunctions

electron ¥ (x) isarandom
. wavelength “ i
function that

Ve rapidly oscillates

—> /\’\x |, @)* >0
> as long as
>
\/\/ \ Vo (/>0 T-invariance
IS preserved




- » Diagonal matrix elements are much bigger than
In the limit the offdiagonal ones
- I\/Idiagonal >> M

* Diagonal matrix elements in a particular sample
do not fluctuate - selfaveraging

}-:»-

More general: finite range interaction potential U(F)

offdiagonal

Ac
Maﬂaﬂ:;jdr‘w HW

~\|2
\%(r)\ = volume

The same
conclusion




Universal (Random Matrix) limit - Random
Matrix symmetry of the correlation functions:

All _correlation functions are inva_riant under
arbitrary orthogonal transformation:




There are only three operators which are quadratic in
the fermion operators a’ , d , and invariant under RM
transformations:

total number of particles

total spin

0?0?0?0?



Charge conservation P o+ ~ 4
(gauge invariance) noK or only K K

Invariance under -no S only SZ
rotations in spin space

Therefore, In avery general case

Only three coupling constants describe all of
the effects of e-e interactions



In a very general case coupling constants
describe effects of electron-electron interactions:

H  =eVA+E.A*+J5%+ 4, K'K.

LL. Kurland, I.L.Aleiner & B.A., 2000

See also

P.W.Brouwer, Y.Oreg & B.1.Halperin, 1999
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In a very general case coupling constants
describe effects of electron-electron interactions:

H  =eVA+E.A*+J5%+ 4, K'K.

where 51 IS the one-particle mean level spacing



Only one-particle part of
the Hamiltonian, H, ,
contains randomness

@ —uD



E determines the charging energy
C (Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
BCS  pairing



| Excitations are similar to the excitations in a disordered Fermi-gas.

ll.  Small decay rate
lll. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior follows from the fact that

different wave functions are almost uncorrelated




