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We consider a spatially homogeneous gas at thermodynamic equilibrium in the regime
of an almost pure condensate. The particles of the gas are spinless and have an interaction
of negligible range and scattering length strictly positive. The Bogoliubov Hamiltonian
predicts the existence of eigenmodes, the Bogoliubov modes, but neglects the interaction
between these modes. Here we would like to take into account the interaction between the
modes and show that it leads to a finite lifetime for the Bogoliubov excitations. We will
calculate the lifetime of the Bogoliubov excitation of wavevector q in the thermodynamic
limit using the Fermi’s golden rule.

1 Interaction Hamiltonian

We recall the model Hamiltonian written in second quantization for the Bose gas
interacting through a Dirac δ potential :

H =

∫

L3

d3r

[

− h̄2

2m
ψ̂†(r)∆ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]

. (1)

The field operator is given by ψ̂(r), m is the mass of the particle and g > 0 is the coupling
constant. The spatial integral is taken on a cubic box of size [0, L]3 and we impose periodic
boundary conditions.

1. Write the condensate wavefunction φ(r) correctly normalized.

2. We perform the decomposition of the field operator as follows :

ψ̂(r) = φ(r)a0 + δψ̂(r) (2)

where a0 annihilates a particle in the condensate mode. Explain why in the Hamil-
tonian H one must look for cubic terms in δψ̂(r) if we want to calculate the first
correction to the Bogoliubov Hamiltonian.

3. Show that the kinetic energy terms T in the Hamiltonian H involve the operator
δψ̂(r) but not a0. Deduce that T cannot make appear cubic terms in δψ̂(r).

4. We insert the decomposition Eq.(2) into the interaction part of the Hamiltonian.
Write the terms of order three.
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5. We make use now of the modulus–phase representation :

â0 = eiθ̂
√

n̂0 , [n̂0, θ̂] = i (3)

where n̂0 is the operator number of particles in the condensate. We eliminate n̂0

using the relation

n̂0 = N̂ −
∫

d3r δψ̂†(r)δψ̂(r) (4)

and we eliminate the phase operator of the condensate mode, supposed to be her-
mitian, by introducing the field

Λ̂(r) = e−iθ̂δψ̂(r) . (5)

Show that after elimination of the condensate mode, the terms of the previous
question give

Hcube = g
√
ρ

∫

d3r Λ̂†(r)
(

Λ̂(r) + Λ̂†(r)
)

Λ̂(r) , (6)

where ρ = N/V is the density. Hcube is then the first correction to the Bogoliubov
Hamiltonian.

2 Fermi’s golden rule

At zero temperature the main source of decay of a Bogoliubov excitation comes from
elementary Beliaev processes, shown in Fig.1, where the excitation q disappears by giving
two other excitations k1 and k2.

Fig. 1 – Beliaev processes.

We recall Fermi’s golden rule :

Γelem
i→f =

2π

h̄
|〈f |V |i〉|2 δ(Ef − Ei) . (7)

Γelem
i→f is the elementary transition rate of the initial state towards the final state that

belongs to a continuum. The total rate of depart from the initial state is obtained by
integrating the elementary transition rate over all the final states.

1. Write in second quantization the initial state |i〉 and the final state |f〉 of a Beliaev
process.
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2. Apply Fermi’s golden rule and express the total rate of depart from the initial state
Γq as a sum which is a function of the squared matrix element |〈f |Hcube|i〉|2.

3. Using Wick’s theorem, calculate the matrix element |〈f |Hcube|i〉|2 and show that in
the thermodynamic limit one finds :

Γq =
g2ρ

(2π)2h̄

∫

d3k 2 |Bq
k,k′|2 δ(ǫk + ǫk′ − ǫq) (8)

where k′ = |k − q| and the coefficient Bq
k,k′ is given by

Bq
k,k′ = UqUkUk′ + (Uq + Vq)(VkUk′ + UkVk′) + VqVkVk′ . (9)

in terms of the usual Bogoliubov functions Uk, Vk. We recall the decomposition of
the field Λ̂ :

Λ̂(r) =
∑

k 6=0

b̂kUk
eik·r

√
V

+ b̂†
k
Vk
e−ik·r

√
V

. (10)

3 Limit where ǫq ≪ µ.

We can perform the angular integration in (8), which gives the following known result

Γq =
g

2πh̄

2mµ

h̄2

∫ q

0

dk
(

Bq
k,k′

)2 k

q

ǫq − ǫk

[µ2 + (ǫq − ǫk)2]1/2
(11)

where ǫk are the eigenenergies of the Bogoliubov mode with k′ such that :

µ+
h̄2k′2

2m
=

[

µ2 + (ǫq − ǫk)
2
]1/2

. (12)

In addition, in the limit where ǫq ≪ µ one obtains

(

Bq
k,k′

)2 ≃
(

3

4
√

2

)2 (

h̄

mc

)3

qkk′ . (13)

1. Calculate ǫq, ǫk and k′ as a function of q, k and the sound velocity cs =
√

µ/m in
the limit ǫq ≪ µ.

2. Calculate Γq and find the result of Beliaev, Sov. Phys. JETP 7, 299 (1953) :

Γq ≃ 3

320

h̄

πmρ
q5 . (14)
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