Energy minimization in the BCS state and excitation spectrum (II)

C. Trefzger, M2 - ICFP

8th November 2012

1 BCS Hamiltonian and excitation spectrum

To describe fermionic superfluidity one often uses the so-called BCS Hamiltonian, which is a quadratic Hamiltonian in the field operator. In order to find it we decompose

$$
\begin{equation*}
\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}=\left\langle\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}\right\rangle+\left(\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}-\left\langle\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}\right\rangle\right), \tag{1}
\end{equation*}
$$

and we neglect the terms which in the interaction energy are quadratic in the "fluctuations" $\left(\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}-\left\langle\hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow}\right\rangle\right)$.
a) Determine the BCS Hamiltonian starting from the model Hamiltonian of question 1 a) of the previous lecture, where we will replace μ par $\tilde{\mu}$.
b) In the Heisenberg point of view the equations for the time-evolution of the field operators are liner:

$$
i \hbar \frac{d}{d t}\left(\begin{array}{c}
\hat{\psi}_{\uparrow}(x) \tag{2}\\
\hat{\psi}_{\downarrow}(x) \\
\hat{\psi}_{\uparrow}^{\dagger}(x) \\
\hat{\psi}_{\downarrow}^{\dagger}(x)
\end{array}\right)=\mathcal{L}\left(\begin{array}{c}
\hat{\psi}_{\uparrow}(x) \\
\hat{\psi}_{\downarrow}(x) \\
\hat{\psi}_{\uparrow}^{\dagger}(x) \\
\hat{\psi}_{\downarrow}^{\dagger}(x)
\end{array}\right) .
$$

Calculate the operator \mathcal{L}. Is it Hermitian? We will use a 2×2 block notation where we introduce the spin base $|\uparrow\rangle,|\downarrow\rangle$.
c) Show that

$$
x \rightarrow\left(\begin{array}{c}
\tilde{u}_{k}(x) \tag{3}\\
0 \\
0 \\
\tilde{v}_{k}(x)
\end{array}\right)=\left(\begin{array}{c}
U_{k} \\
0 \\
0 \\
V_{k}
\end{array}\right) \frac{e^{i k x}}{\sqrt{L}}
$$

with U_{k} and V_{k} reals, are eigenvectors of \mathcal{L} and calculate the corresponding eigenvalues λ_{k}. Show that the constants U_{k} and V_{k} are related to the u_{k} et v_{k} of the BCS ansatz. In particular we get: $U_{k}=u_{k}=1 / \sqrt{1+\Gamma_{k}^{2}}$ and $V_{k}=-v_{k}=-\Gamma_{k} / \sqrt{1+\Gamma_{k}^{2}}$.

Show that

$$
x \rightarrow\left(\begin{array}{c}
0 \tag{4}\\
\tilde{u}_{k}(x) \\
-\tilde{v}_{k}(x) \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
U_{k} \\
-V_{k} \\
0
\end{array}\right) \frac{e^{i k x}}{\sqrt{L}}
$$

are also eigenvectors of \mathcal{L}.
d) Show that we can write

$$
\begin{align*}
& \hat{\psi}_{\uparrow}(x)=\sum_{k} \tilde{u}_{k}(x) b_{k \uparrow}-\tilde{v}_{k}^{*}(x) b_{k \downarrow}^{\dagger} \tag{5}\\
& \hat{\psi}_{\downarrow}(x)=\sum_{k} \tilde{u}_{k}(x) b_{k \downarrow}+\tilde{v}_{k}^{*}(x) b_{k \uparrow}^{\dagger} \tag{6}
\end{align*}
$$

and that

$$
\begin{equation*}
U a_{k \uparrow} U^{\dagger}=b_{k \uparrow} . \tag{7}
\end{equation*}
$$

e) Show that $\left|\psi_{B C S}\right\rangle$ is the vacuum of the operators $b_{k \sigma}$.
f) Put the BCS Hamiltonian in the canonical form as a function of the $b_{k \sigma}$ and the $b_{k \sigma}^{\dagger}$.
g) For $g=0$ draw the spectrum $k \rightarrow \lambda_{k}$ and give a physical interpretation in terms of creation of holes and particles.
h) Now we consider weak interactions such that $\Delta \ll \epsilon_{F}$. Draw λ_{k} in this case and show that there is a gap of size Δ that appears in the spectrum of excitation.

