# One-body and two-body correlation function of a Fermi gas at $T=0$ 

C. Trefzger, M2 - ICFP

20th September 2012

Consider a Fermi gas of $N$ non-interacting particles confined into a $D$-dimensional box of size $L$ with periodic boundary conditions. We assume the system to be at zero temperature ( $T=0$ ) and the fermions to be all in the same spin state $|+\rangle$. We define $\varphi_{1}, \ldots, \varphi_{N}$ to be the $N$ single-particle wavefunctions of lowest energy.

## 1 Slater determinant

Write the complete state vector of the $N$ fermions. What is the maximal momentum $p_{F}$ accessible to the fermions in $3 D$ ? And in $1 D$ ?

## 2 One-body observables

Let the operator $\mathcal{B}$ be an observable involving only one-body operators:

$$
\begin{equation*}
\mathcal{B}=\sum_{i=1}^{N} B(i) \tag{1}
\end{equation*}
$$

where $B(i) \equiv \operatorname{Id}(1) \operatorname{Id}(2) \ldots B(i) \ldots \operatorname{Id}(N)$ acts only on the state of the $i$-th particle.
a) Calculate the expectation value $\langle\mathcal{B}\rangle$ of the operator $\mathcal{B}$ as a function of $\varphi_{1}, \ldots, \varphi_{N}$.
b) We define the one-body density matrix $\hat{\rho}(1)$ such that for any operator $\mathcal{B}$ one has:

$$
\begin{equation*}
\langle\mathcal{B}\rangle=\operatorname{Tr}_{1}[\hat{\rho}(1) B(1)]=\operatorname{Tr}_{1}[B(1) \hat{\rho}(1)] . \tag{2}
\end{equation*}
$$

Write the explicit expression of $\hat{\rho}(1)$ as a function of $\varphi_{1}, \ldots, \varphi_{N}$.
c) Use the above results to evaluate the spatial density of the fermions in the gas, $\rho(\mathbf{r})=\rho_{0}$.
d) Consider the following operator

$$
\begin{equation*}
G(i)=|i: \mathbf{r}\rangle\left\langle i: \mathbf{r}^{\prime}\right| \tag{3}
\end{equation*}
$$

acting as $G$ on the $i$-th particle, while being the identity $\operatorname{Id}(j)$ for all $j \neq i$. In the thermodynamic limit, calculate explicitly the single-particle correlation function

$$
\begin{equation*}
g^{(1)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left\langle\sum_{i=1}^{N} G(i)\right\rangle \tag{4}
\end{equation*}
$$

first in $1 D$, then in $3 D$.

## 3 Two-body observables

Let the operator $\mathcal{B}$ be an observable involving only two-body operators:

$$
\begin{equation*}
\mathcal{B}=\sum_{i=1}^{N} \sum_{j \neq i} B(i, j), \tag{5}
\end{equation*}
$$

where $B(i, j) \equiv \operatorname{Id}(1) \operatorname{Id}(2) \ldots B(i) \ldots B(j) \ldots \operatorname{Id}(N)$ acts as $B$ only on the states of the particle $i$ and particle $j$.
a) Calculate the expectation value $\langle\mathcal{B}\rangle$ of the observable $\mathcal{B}$ as a function of $\varphi_{1}, \ldots, \varphi_{N}$.
b) We define the two-body density matrix $\hat{\rho}(1,2)$ such that for any operator $\mathcal{B}$ one has:

$$
\begin{equation*}
\langle\mathcal{B}\rangle=\operatorname{Tr}_{1,2}[\hat{\rho}(1,2) B(1,2)]=\operatorname{Tr}_{1,2}[B(1,2) \hat{\rho}(1,2)] \tag{6}
\end{equation*}
$$

Express $\hat{\rho}(1,2)$ as a function of $\varphi_{1}, \ldots, \varphi_{N}$.
c) Show that the trace of $\hat{\rho}(1,2)$ restricted to the subspace of particle 2 gives $\hat{\rho}(1)$ up to a multiplicative factor.
d) Consider the following operator:

$$
\begin{equation*}
G(i, j)=|i: \mathbf{r}\rangle\langle i: \mathbf{r}| \otimes\left|j: \mathbf{r}^{\prime}\right\rangle\left\langle j: \mathbf{r}^{\prime}\right| . \tag{7}
\end{equation*}
$$

Apply the above results to evaluate the spatial density of pairs in the gas, namely the two-body correlation function $g^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$.
e) Express $g^{(2)}$ as a function of $g^{(1)}$.
f) In the thermodynamic limit, calculate explicitly $g^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ in $1 D$ than in $3 D$. We will write the result as follows:

$$
\begin{equation*}
g^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\rho_{0}^{2}\left[1-\phi^{2}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right] . \tag{8}
\end{equation*}
$$

## 4 Application in 1D: Fluctuation of the number of particles in a spatial interval of length $X$

Consider a $1 D$ system and a spatial interval of length $X$ along $x$ as represented on Fig. 1 We are interested in the counting statistics of the number of particles in the interval $X$, which is related to the $g^{(2)}\left(x-x^{\prime}\right)$ function calculated above.


Figure 1: A one-dimensional system (1D) where an interval $X$ is considered.
a) Let $N_{X}$ be the operator that counts the number of particles inside the interval $[0, X]$. Show that $\left\langle N_{X}^{2}\right\rangle=\left\langle N_{X}\right\rangle+\int_{0}^{X} d x \int_{0}^{X} d x^{\prime} g^{(2)}\left(x-x^{\prime}\right)$.
b) Show that:

$$
\begin{equation*}
\int_{0}^{X} d x \int_{0}^{X} d x^{\prime} g^{(2)}\left(x-x^{\prime}\right)=2\left[X \int_{0}^{X} d x g^{(2)}(x)-\int_{0}^{X} d x x g^{(2)}(x)\right] . \tag{9}
\end{equation*}
$$

For this purpose we can derive this relation (9) with respect to $X$.
c) In the limit where $k_{F} X \gg 1$ calculate the variance $\Delta N_{X}^{2}$, given the following useful relations:

$$
\begin{align*}
\int_{0}^{x} d t \frac{\sin ^{2} t}{t^{2}} & =\frac{\pi}{2}-\frac{1}{2 x}+O\left(\frac{1}{x}\right) & \text { for } \quad x \rightarrow \infty  \tag{10}\\
\int_{0}^{x} d t \frac{\sin ^{2} t}{t} & \simeq \frac{1}{2} \ln (2 x)+\frac{1}{2} \gamma+O(1) & \text { for } \quad x \rightarrow \infty \tag{11}
\end{align*}
$$

where $\gamma=0.577 \ldots$ is Euler's constant. Comment on the result.
d) In the regime of non-zero temperature we have an approximate result for $T \ll T_{F}$, calculated by Efetov et Larkin (Sov. Phys. JETP 42 (1976), 390):

$$
\begin{equation*}
g^{(2)}(x) \simeq \rho_{0}^{2}-\left(k_{F} \frac{T}{2 T_{F}} \frac{\sin \left(k_{F} x\right)}{\sinh \left(\pi T k_{F} x / 2 T_{F}\right)}\right)^{2} \tag{12}
\end{equation*}
$$

Find the condition on $T / T_{F}$ and on $k_{F} x$ such that $g^{(2)}(x)$ is close to its value at $T=0$.
e) At $k_{F} X=100$, calculate $\left\langle N_{X}\right\rangle, \Delta N_{X}^{2}$ and $\Delta N_{X}^{2} /\left\langle N_{X}\right\rangle$.

Evaluate the upper bound of $T / T_{F}$ such that our equations are valid for this specific value of $k_{F} X$.

