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INTRODUCTIONTypial soft matter systems exhibit omplex behaviour at the mirosopi level. How-ever, at marosopi length sales the relevant degrees of freedom are often purelygeometrial. Classial di�erential geometry of urves and surfaes onstitutes the mostappropriate framework to study the interplay between physial properties and geome-try. If one or two dimensions of the material are muh smaller than the others, one anapply an e�etive desription in terms of an elasti theory for low-dimensional ontinua.Representative examples are polymers suh as DNA, biologial �uid membranes, solidshells, elasti sheets, and growing soft thin tissues.However, in some ases internal degrees of freedom, suh as the onentration ofmoleules omposing the material or the thikness variation due to strutural mismathbetween surfae domains must be also onsidered in the desription in order to har-aterize some physial properties in whih these mirosopi features deeply in�uenethe physial and biologial behavior of the material.This thesis is foused on the study of �uid and elasti membranes (surfaes, inter-faes), their physial and mathematial features and their possible ability to desribesome properties of biologial low-dimensional objets, like lipid vesiles (in the ase of�uid surfaes), growing animal and vegetal tissues or other slender strutures (in thease of elasti surfaes) or �exible on�ned sheets. To ahieve our purpose we have usedmainly theoretial tehniques, but also numeris and experimental tools.From the theoretial point of view, a ommon point on the desription of �uid andelasti membranes is the use of variational methods to determine the shape of theselow-dimensional objets. In our problems, it will always be possible to write a freeenergy inorporating their prinipal elasti features and onsequently, their shapes anbe obtained using a variational proedure. We disuss how this geometri harateristimay strongly in�uene several aspets of physial and mehanial properties of thesebiologial objets.This thesis is organized as follows. In Chap. 1 we desribe the fundamental prop-erties of natural and syntheti objets in whih the theoretial framework of �uid andelasti surfaes may be applied. We review some previous results involving phase sep-aration of the omponents of lipid vesiles, the growth of thin elasti strutures likesoft biologial tissues or elasti plates and the on�nement of low-dimensional elastistrutures.In Chap. 2 we introdue the theoretial framework that will be used to treat theelasti and mehanial properties of membranes during the thesis. For this purposethe di�erential geometry of surfaes and urves is the most appropriate formalism. The



4prinipal energy ontributions of �uid and elasti interfaes are presented and analyzed.Previous alulations will be generalized inorporating mirosopi degrees of freedom ina ontinuous desription. Formulations and results that are presented for �uid surfaesan be easily extended to elasti membranes.In Chap. 3 we use this framework to present a revision of the usual desriptionof inhomogeneous lipid vesiles, inorporating into the ontinuous formalism elastimirosopi degrees of freedom. The onsequenes of this modi�ation is analyzed inthe budding proess ourring in a biphasi axisymmetri vesile, through the behaviorof the line tension and the stability of this proess in the �nal shape of the vesile.In Chap. 4 we desribe the geometry and elastiity of growing slender strutures withonstant Gaussian urvature. A Hamiltonian desription of the evolution of a losedurved in three dimensional spae desribing a surfae with this property is interpretedas a growth proess in whih the evolving urve is the boundary of the growing surfae.This model is used to study isometri embeddings of the pseudosphere and examplesof tissues that are observed in nature are analyzed.In Chap. 5 the paking of �exible strutures in on�ned geometries is studied using asimple experimental setup. A phase diagram desribing the strength of on�nement onthe elasti sheets is desribed and the asade of bifurations leading to the preferredspiral struture that minimizes the pressure within the ontainer are also presented.Numerial simulations on�rm all the senarios in the earliest stages of on�nement.
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Chapter 1PHYSICAL PROPERTIES OF FLUID AND ELASTICMEMBRANESIn this hapter we brie�y outline the prinipal features of the biologial systemsthat will be onsidered in the ourse of this thesis. For this purpose we disussand analyze some preliminary results involving elasti and �uid surfaes. First,the basi properties of ell membranes and inhomogeneous lipid vesiles will bedesribed. Among them, fundamental proesses suh as phase separation, shapetransformation, budding and �ssion ourring in �uid surfaes will be onsidered.Seondly, the mehanial and geometrial properties of biologial soft tissues willbe desribed. We present the onsequenes of growth proesses for the shape of softtissues. 1.1 Fluid surfaesFluid surfaes are haraterized by the fat that they do not resist in plane deforma-tions, that means, strething may be negleted and their equilibrium shapes are totallydetermined by bending. Typial biologial systems exhibiting this behaviour at largesale are ell membranes, lipid vesiles and amphiphili monolayers. In this setion wewill desribe their fundamental features, whih will be useful in the rest of this thesis.We fous espeially on lipid vesiles and their phenomenology.1.1.1 The biologial membraneThe biologial membrane of living ells is a very omplex struture made out mainly ofa mixture of di�erent lipid speies suh as holesterol, sphingolipids, phospholipids, butalso sugars and proteins. This struture is endowed with several interesting properties.For instane, it de�nes the only boundary that enloses the ells and it served as theboundary for intraellular organelles suh as the mitohondria, the nuleus, the Golgiapparatus, the lysosome, et. The membrane is able to interat with the environmentand partiipates in ative biologial proesses, suh as the transport of lipids and pro-teins. Owing to its semi-permeability, it is a natural barrier for moleules and virusesthat try to infet or to invade the ell. In view of the omplexity of the real ellularmembrane, it is di�ult to study its in vivo or in vitro properties and for this reason



10 Chapter 1: Physial properties of �uid and elasti membranesit may be more instrutive to onsider a simpli�ed model system whih an be easilyontrolled in the experienes: the lipid vesile.

Fig. 1.1: A shemati representation of a ell membrane showing its typial biologial om-ponents, suh as lipid moleules, holesterol, integral proteins and sugars. FromWikipedia 1.1.2 Lipid vesilesLipid vesiles are haraterized by their size. Typial experimental systems in the liter-ature are lassi�ed as: Small Unilamellar Vesiles SUV (30−50[nm]), Large UnilamellarVesiles LUV (50− 500[nm]), and Giant Unilamellar Vesiles GUV (1− 200[µm]). Thesize of the lipid vesile is diretly related to the experimental proess used to prepare it.Beause of their properties and the diversity of shapes, GUV's onstitute an interestingstudy subjet. Their size and urvature are similar to those of living ells and theirlipid bilayer exhibits the basi properties of biologial membranes [89℄. At mehanialequilibrium they adopt striking shapes whih have been observed experimentally andexplained both theoretially and numerially [18, 115, 116℄.From a theoretial point of view, lipid vesiles are losed and semipermeable softshells, whih resist bending deformations but that are onsidered as �uid in their tangentplane. However, despite of their �uidity, they an exhibit lateral inhomogeneities dueto miro-domain formation. These strutures arise from a phase separation betweenthe di�erent types of lipids omposing the membrane.In reent experiments three families of lipids are used: sphingolipids, phospholipidsand holesterol [45, 117, 118℄. Eah of them has di�erent strutural, hemial and phys-ial properties whih determine the thermodynami behavior of the vesile. Cholesterolhas a entral role in membrane mehanis, partiipating in the membrane �uidity reg-ulation. This is possible beause it is a smaller moleule whih inserts into the bilayerand modi�es its �uidity loally, induing domain segregation in the multi-omponent



1.1. Fluid surfaes 11membrane. Some important strutures are alled "rafts", whih are domains enrihedin holesterol, sphingomyelin and ertain membrane proteins.

Fig. 1.2: A Giant Unilamellar Vesile (GUV) observed using phase ontrast mirosopy. Atright the sheme represents the lipid bilayer struture. Thikness is of the order of
4 − 5[nm]. From [3℄.In the next two setions we review some physial fats that determine morphologialtransitions of multi-omponent vesiles. In partiular, we will fous on biphasi vesi-les, where budding and �ssion proess have been studied theoretially and observedexperimentally and numerially.1.1.3 Formation of lipid raftsIt is widely believed in the sienti� ommunity that lipid rafts are involved in severalell funtions like signal transdution, lipid tra�king, ell migration, and protein dis-plaements [121℄. Although they have been observed experimentally in inhomogeneouslipid vesiles and their fabriation is standard in GUVs, a de�nitive model of lipid raftformation based on mirosopi moleular interations is still laking. However, anapproah involving mathematial models based on a mirosopi theory of oagulationand fragmentation has been developed allowing to explain the raft formation in lipidbilayer membranes [111℄. Although the term "raft" has been oined to denote lipiddomains that are believed to be in ell membranes here we use the term to desribe thelipid domains observed in GUVs.From a mesosopi point of view rafts an be interpreted as domains resulting froma thermodynami phase separation of the lipid speies. Typially this proess triggersshape deformations in the multi-omponent membrane leaving striking and omplexshapes [70, 129℄.However, the typial small size of rafts has not been satisfatorily explained so far bymeans of a simple phase-separation proess and new ingredients must be inorporated,as the exhange of lipids with the surrounding medium [53℄ or the membrane reyling



12 Chapter 1: Physial properties of �uid and elasti membranesproess [132℄. Even more omplete models inorporating oarse-grained moleular dy-namis have been performed in order to explain the equilibrium phase separation inbinary lipid mixtures at the liquid-gel phase oexistene [120℄. Experimentally, theourrene of phase separation has been on�rmed in GUVs whose omposition mimisthose of ellular membranes [45, 135℄.Rafts are more ordered and tightly paked than the surrounding membrane. Theyare alled Liquid ordered domains (Lo). Classial surrounding membrane, that is lessstrutured is typially alled Liquid disordered domain (Ld). In spite of its more "dense"struture rafts onserve their �uidity. As the two oexisting phases are liquid, theirelasti desription is similar, but eah of them has its own set of physial onstants.Rafts an also di�use within the less dense Ld membrane showing a partile-likebehaviour and giving rise to striking dynamis, reombining with eah other to produedomains of larger sizes [141℄.In experiments it has been shown that Lo domains an be extrated from the Lddomain. Suh experiments use di�erent methods as tubular deformation [6℄, osmotishoks [15℄ or absorption of external moleules like proteins or detergents [124℄. Inall these proesses line tension an drive the instability that produes the �nal shapetransformation, at least in the �rst stages of budding. An inrease of line tension triesto redue the interfae length between domains, favoring �ssion and budding [72℄. Theinteresting subjet is to reveal whih are the physial fators taking part in line tensionhanges.

(a) Vesile showing multiple raft forma-tion. Hemispherial projetion of imagestak (b) Numerial simulations of phasetransition driving shape deformation ina two-omponent membraneFig. 1.3: Images showing raft formation in a giant biphasi lipid vesiles using two-photonmirosopy and numerial simulations. Images (a) and (b) from [15℄ and [129℄, re-spetively.



1.1. Fluid surfaes 131.1.4 Budding and �ssion proessBudding is a shape transformation proess ourring in homogeneous and inhomoge-neous lipid vesiles: a portion of the membrane is bent slightly to form a small budhaving the shape of a spherial up. The resulting bud an either be separated from thelarger vesile in a multistep growing proess whih normally ends with the expulsion ofthe daughter vesile or remains onneted to it through a small membrane nek thatresembles a atenoidal segment and is haraterized by essentially zero mean urva-ture. This proess an be triggered by di�erent physial fators like the heating of thevesile [48℄, the adsorption of proteins or detergent moleules at the interfae betweendomains [124, 125℄ or by hanging the osmoti pressure [48℄ whih ours at onstanttemperature.By means of �uoresene mirosopy of GUVs the domain formation and the subse-quent budding proess have been experimentally on�rmed [15, 14, 13℄. Ref. [15℄ alsoprovides an evidene for the line tension of intramembrane domains.The nuleated domains on the membrane may exhibit a dynamial behaviour, whihhas been studied numerially in [81℄ by means of Monte Carlo simulations on a dis-retized surfae. Hydrodynami e�ets have been onsidered numerially in [84℄ show-ing the formation of buds, vesiulation and the oalesene of aps and �at pathes.The e�ets of line tension in domain formation has been also studied numerially in[137℄ by means of phase �eld models in multi-omponent vesiles and open membranes.Several of the experimental shapes indued by the budding proess are reprodued bythis simulation.The shapes adopted by lipid membranes an be lassi�ed in two regimes. In thehigh tension regime they look very similar to those of �uid interfaes, and they areharaterized by onstant mean urvature. On the ontrary, in the low tension regimethe shape is governed by bending elastiity. The morphologial transitions in this aseinvolve the formation of a small nek between the small protrusion and the mothervesile. The presene of a membrane tension ats to suppress the budding proess.Fission proess is the later stage of budding and involves a striking topologialhange of the mother vesile. To obtain a totally separated daughter vesile, we needto destabilize the narrow nek produed during the budding transition. One option is toredue the Gaussian rigidity of the membrane, or inrease the line tension [37℄. In thisreferene a model that ouples the Gaussian urvature with the loal lipid ompositionhas been able to explain the nek destabilization. The omponents of lipids an redueor inrease the Gaussian rigidity and therefore enhane �ssion, or fusion proess.Having determined some physial and biologial properties of real �uid surfaes, inthe following setion we will desribe the main features of natural and syntheti elastisurfaes, suh as biologial tissues or elasti plates and shells.



14 Chapter 1: Physial properties of �uid and elasti membranes
(a) Fission of small vesiles from phase separation

(b) Di�erent stages of a numerial simulation of a budding proessin a phase separating vesileFig. 1.4: Numerial evidene of budding and �ssion proess in a phase separating vesile. From[84℄1.2 Elasti surfaes. Biologial tissues and growth proessIn-plane deformations of elasti surfaes are ruial in determining the geometri andmehanial properties of thin materials. An energy due to strething must be added tothe usual desription in order to onsider extension-ompression deformations. Typialsystems showing this feature are biologial tissues and elasti plates and shells.Biologial tissues are onventionally lassi�ed into two ategories: hard tissues (e. g.bones or teeth) and soft tissues (e. g. , skin, musles arteries, et). The major di�erenebetween hard and soft tissues lies in the magnitudes of the deformations that they ansustain. In this sense, the deformations of soft tissues require a nonlinear theory thatallows for large deformations. In the following setion we disuss some fundamentalresults in the growth proess assoiated to biologial tissues.Both animal and vegetal tissues have the ability to grow and remodeling in responseto internal and external loads. Growth is a proess by whih the shape of a body willhange, either by mass rearrangement via bulk and surfae di�usion, or by mass transferfrom the surrounding environment. Then We an say that a growing deformable bodyis an open system. It means that the material partiles are added or removed alongthe boundary by interhanging mass with the surrounding or with internal struture.In this sense in the growth proess there is no orrespondene between the initial andurrent on�guration of a deformable body and then the lassial ontinuum mehanismust be strongly modi�ed to desribe the properties of the growing body, even if this



1.2. Elasti surfaes. Biologial tissues and growth proess 15desription onstitutes the most appropriate framework to determine the mehanialproperties of soft tissues.After the work of Skalak and Fung [59, 58, 122℄ soft tissues have been widely reog-nized and haraterized as omplex mehanial materials with nonlinear inhomogeneousand anisotropi behaviors.It is neessary to distinguish di�erent growth proess, depending on the geometri-al onsequenes that are produed in the growing struture. For instane, it an berestrited to spei� loations suh as tip growth whih takes plae in most mirosopi�lamentary systems, like the eukaryoti fungi or the prokaryoti atinomyetes. De-formations of teeth or horns and bones may be onsidered as surfae growth in whiharetion and deposition produe the prinipal mehanism of growth. Finally if thegrowth proess ours in the bulk of the material we will say that the growth is volu-metri. Classial examples in whih growth is a onsequene of a physiologial proessare arteries, solid tumors and musles.

(a) Deformations after the bifurationprodued by the instability of the growthproess in an hyperelasti shell. From [7℄. (b) The two �rst destabilized modes of a growinghyperelasti dis. A saddle shape and a symmet-ri shape. Comparison with the shape adoptedby the Aetabularia algae. From [42℄.Fig. 1.5: Some shapes produed by instabilities in the growth proess of thin hyperelastistrutures.Within the theory of �nite elastiity [106℄ the framework for soft tissues aountingfor volumetri growth has been established by Rodriguez et al [112℄. The growth desrip-tion is inspired by the elasto-plastiity itself: the deformation gradient (the geometrideformation tensor) an be deomposed as the produt of a growth tensor (plastiity)desribing the loal addition of material and an elasti tensor that onsiders the elastirelaxation and reorganization of the body, ensuring its integrity (no avitation) andompatibility (no overlap). From this fundamental framework several studies involv-ing stress generation and ompatibility have been performed, but the more importantmehanial feature involving growth is the generation of residual stress [123℄.



16 Chapter 1: Physial properties of �uid and elasti membranesIn most tissues, stresses an limit the growth proess. These stresses are, in turn,generated by the growth itself. They are ruial in some transendental biologialfeatures of tissues, like regulation of growth in solid tumors. However, they are alsoimportant in morphogenesis and embryogenesis by generation of elasti instabilities,leading to shape transformations on the growing body [7, 63℄. For instane, in Fig. 1.5(a)we show the typial shapes adopted by a growing body (a spherial hyperelasti shell)whih undergoes an elasti instability due to anisotropi growth. The body is onsideredwithin the framework of the theory of �nite elastiity as an hyperelasti material and theshape transformation is explained via inremental deformations. In any ase, residualstresses are fundamental to determine when the intensity of anisotropi growth beomesimportant enough to destabilize the spherial shell shape.Although in that ase the stability properties have been studied in a thin body, thethikness of the shell has been used as a parameter determining the di�erent regimesof the instability where mehanial and geometri e�ets both play a di�erent role,determining the stability of thin and thik spherial objets under anisotropi growth.In [43℄ a model of morphogenesis based on similar ideas has been developed. How-ever, in this ase, the dimensionality of the problem is redued in order to haraterizethe growth of thin elasti strutures. The behaviour of the plate is e�etively desribedby a two dimensional elasti surfae. The resulting model produes equilibrium equa-tions that are of the Föppl-von Kármán type where growth ats as a soure of meanand Gaussian urvature. This onept will be used in Chap. 4 when growing surfaesof onstant Gaussian urvature will be studied.The formulation introdued in [43℄ has been applied to the ase of the anisotropiand homogeneous growth of an hyperelasti free dis [42℄. In Fig. 1.5(b) we show twoshapes adopted by the dis when growing planar dis is destabilized in its two �rstbending modes, in the small deformations regime. The saddle shape is produed bythe most unstable mode, when growth is mainly irumferential. A symmetri shapeours when radial growth dominates. These shapes an be ompared with the hangein shape experiened by a population of Aetabularia algae during their development.For these objets, the earliest stages of the development lead to a symmetri onialshape. Later irumferential growth predominates to produe the saddle shape.The senario is di�erent when large deformations are allowed as a onsequene ofthe growth proess (see Fig 1.6). In this ase the strething ontribution is biggerthan bending energy and the general solution is a one having zero Gaussian urvature,exept at the tip, where bending e�ets are important. Bending energy is also usedin this ase to determine the preferred solution that has minimal energy. When radialgrowth dominates it is shown that singularities an be produed as a onsequene of thegrowing proess. The struture of this onial singularity appearing in growing sheetshas been onsidered in [100℄. They also desribe the equilibrium states adopted by theone whih also exhibits a surplus angle. When this angle φe is positive the dis mayfold into one of a disrete in�nite number of states. All these states have a ritial valueof the surplus angle φe beyond whih the surfae touhes itself. However the surfaesare stable before the self-ontat and the ground state is haraterized by the two fold
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(a) The two modes of minimal energyfar from the tip and their resultantshapes built out of paper. From [42℄. (b) Surfae shapes for φe = 2π with
n = 2, 3 and 4. From [100℄.Fig. 1.6: Preferred shapes for the large deformation regime. In this ase the geometry isharaterized by zero Gaussian urvature in the whole surfae exept at the tip,where bending e�ets beome important.symmetry as it is depited in Fig, 1.6(b) inset (a) and (b).When φe grows, a suessive series of shape transformations is allowed from n =

2, 3, . . ., when the surfae begins to be self-interseted. As the physial surfae is notself-interset the di�erent regions ome into ontat and they experiene fores thatwill deform the surfae as in [21℄. In this ase the internal loal pressure will appearand the spherial volume oupied by the one is paked more and more densely. Inthis ase the growth of the sheets is onstrained by the volume oupied by the oneand the shape adopted by the surfae is very intriate. In the following setion we willdisuss the harateristi of these strutures onstrained to grow into a given volumeor surfae. In Chap. 4 the growth of natural and syntheti strutures as non-Eulideanplates or the shape of leaves and plants will be disussed, besides the role of strething.In the following Chapter we desribe the theoretial framework that is needed tostudy �uid and elasti membranes.
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Chapter 2GEOMETRY, MECHANICS AND ELASTICITY OFSURFACESIn this Chapter we review the fundamental energeti properties of two dimensionalelasti objets in a parametrization-free framework. We desribe the elastiity of�uid interfaes, like lipid vesiles, for whih bending deformations dominate. Typ-ial energeti ontributions that are used to obtain the equilibrium shape of thesebiologial objets are analyzed in detail and their physial origins are explained.Then, to illustrate the formalism, two examples that will be useful in the followinghapters are solved expliitly. Finally, we brie�y desribe the energeti and geo-metri properties of two-dimensional elasti slender objets, like plates and shells,in whih the strething ontribution plays a fundamental role. Some previous re-sults whih have served as inspiration are outlined and the treatment of the elastigrowth in this geometri framework is ommented.
2.1 The Energetis of surfaes and interfaesIn most ases, at mesosopi sales, the behavior of homogeneous elasti surfaes, likea lipid membrane, or elasti sheets is totally aptured by its geometrial degrees offreedom. The previous statement is justi�ed by the smallness of the elasti surfaethikness u ≃ 5− 10[nm] if it is ompared with the linear dimension of the membrane,

Lm ≃
√
A ≃ 10[µm], where A is the membrane area.However, in some problems involving inhomogeneous surfaes, the shape and theelasti behaviour of a membrane is not only determined by its geometri properties.Internal degree of freedom representing inhomogeneities on the surfae and global orloal onstraint to the geometry may be added in the energeti desription. All theseontributions will in�uene the behavior and the �nal shape of the membrane, when itundergoes some external deformation. Changes in membrane shape are desribed bythe variations of a total free energy whih enodes its geometri and elasti properties.In what follows, the possible ontributions to this free energy will be presented.



20 Chapter 2: Geometry, Mehanis and Elastiity of Surfaes2.1.1 Desription of a thin elasti objetThere are two di�erent approahes for determining the mehanial properties of a �uidmembrane. One approah involves the onepts of mehanial deformations, momentsand stresses. The other one desribes the membrane in terms of an elasti free energyfuntion. The former is onsidered as a mirosopi approah in whih the membraneappears as a possibly inhomogeneous thin layer with a fore distribution in the trans-verse diretion aross the thikness. This point of view is similar to that onsidered inthe lassial elasti shell theory [52, 79℄. The latter, the mesosopi approah, orre-sponds to an e�etive two-dimensional desription in whih the membrane is onsid-ered as an in�nitely thin surfae, where the material properties are represented by thephysial oe�ients [90, 142℄. It has been shown that both approahes are equivalent[24, 78, 91, 109℄.In this thesis elasti membranes or elasti sheets or shells will be onsidered from amesosopi point of view. To deal with them mathematially we will adopt an e�etivetwo-dimensional surfae desription. Therefore, elasti and mehanial properties ofmembranes will be studied using the language of di�erential geometry of surfaes, whihis brie�y presented in App. A.Before to proeed, we de�ne the notation for the free energy and for the free energydensity assoiated with it. The free energy ontribution of a given surfae will bedenoted as F⊲ and its orresponding free energy density is H⊲. Thus, we have:
F⊲ :=

∫

Σ

dA H⊲ , (2.1)where Σ stands for the surfae representing the �uid interfae (usually, the neutralsurfae) and the symbol ⊲ denotes a spei� free energy ontribution, like bendingelastiity or a global onstraint �xing the volume, as we will see later.2.1.2 Bending energy: The Canham-Helfrih modelUsually there are three types of deformations that allow us to desribe the elastiproperties of a surfae. Any deformation ourring in the membrane will be expressed asa ombination of these three elementary deformations. They are shematially depitedin Fig. 2.1. StrethingThe strething deforms the membrane in its own plane (tangentially). During this de-formation the area of the surfae is not preserved. The energy neessary to separatetwo lipid moleules is greater than the typial energy of the system, due to the hy-drophili nature of the moleules. Therefore as the area of eah lipid does not hange,the strething deformation is, in most ases, negleted. The strething energy depends



2.1. The Energetis of surfaes and interfaes 21on the relative variation of the surfae in a quadrati form:
Fst[X] =

∫

Σ

dAKa

2

(
∆A

A

)2

, (2.2)where Ka is the ompressibility modulus whih is of order 0.2[J/m2] for a lipidvesile. Pure ShearOn the other hand, as lipids an move freely on the surfae, the membrane is onsideredas a two-dimensional inompressible visous �uid and therefore the shear deformationdoes not ontribute to the elasti free energy. This deformation beomes important inthe ase of rystalline or polymerized membranes, where the shear modulus is of order
6 × 10−6[J/m2] [98℄. In this ase a free energy assoiated to a pure shear is obtainedusing the Hooke law :

Fsh[X] =

∫

Σ

dA 1

2
µ(l2 + l−2 − 2) , (2.3)where l = (Lo + ∆L)/Lo is the lateral expansion of the membrane.BendingThe most important ontribution to the elasti free energy at mesosopial sales omesfrom the bending deformation. It implies a normal deformation with quasi-onstantarea of the surfae. This deformation ontrols the shape assumed by the membrane inmehanial equilibrium.It is possible to onstrut an elasti model that onsiders the geometri propertiesof the surfae Σ, as the mean extrinsi urvature H and the Gaussian urvature KG.Both urvatures are the invariants of the mixed urvature tensor Kb

a de�ned on Σ (seeApp. A). The mean extrinsi urvature is related to the trae of the urvature tensoraording to:
K := gabKab := 2H , (2.4)and the Gaussian urvature is de�ned by: KG = Det(Kb

a). If we onsider weakurvatures the lowest order in the expansion of these quantities produes the well-knowCanham-Helfrih free energy [22, 68℄:
FCH[X] =

∫

Σ

dA [κ
2
(K −Ko)

2 + κKG] , (2.5)where κ is the bending rigidity and κ is the Gauss rigidity or saddle-splay modulus.
Ko is the spontaneous urvature whih represents the possible asymmetry between thetwo lea�ets omposing the membrane. The free energy Eqn. (2.5) is also known asWillmore funtional [139℄ when Ko = 0, and is used in shell theory to determine theelasti energy of isometri immersions. We return to this issue in Chapter 4.
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Fig. 2.1: Sheme representing the possible elementary deformations undergone by an elastisurfae: a) Strething; b) Shear; ) Bending. From [51℄.The integral ontaining the Gaussian urvature is a topologial invariant for homo-geneous and losed surfaes aording to the Gauss-Bonnet theorem (see App. A). Thisterm will be only onsidered if a topologial hange takes plae in the lipid membrane,as is the ase of budding and �ssion proesses or an open lipid membrane with and edge[27℄.
2.1.3 Surfae tension energyThe surfae tension energy is a ombination of a strething energy and an entropie�et due to the quasi-invisible �utuations of the surfae at di�erent sales, mainly atsales smaller than the observation one. Flutuations allow to de�ne di�erent areas ofobservation, whih de�ne di�erent surfae tensions [55℄. Hereafter we denote σ(x) thee�etive surfae tension. Assuming that σ is a funtion of the oordinates we have:

Fσ[X] =

∫

Σ

dA σ(x) , (2.6)This term is inorporated into the Canham-Helfrih model to obtain the Hamiltonianfree-energy of lipid vesiles:
FH[X] =

∫

Σ

dA [κ
2
(K −Ko)

2 + κKG + σ
]
. (2.7)When the loal surfae tension σ(x) is a onstant, it an be interpreted as a mini-mization onstraint imposing a �xed area in the lipid membrane. In this sense σ atsas a Lagrange multiplier. However, it an also be a funtion of the oordinates, im-posing the loal inompressibility ondition. This onstraint has been useful in severalontexts, in partiular in numerial simulations of a two-omponents lipid membranethat undergoes a phase separation and a shape transformation [129℄.



2.1. The Energetis of surfaes and interfaes 232.1.4 The Area-di�erene modelTypially in experiments a losed lipid membrane does not have a reservoir of lipidmoleules and therefore the free energy minimization must be arried out at onstantnumber of lipids. In this ontext two models exist: The Bilayer oupled model whihimposes a onstant number of lipids in eah layer [127, 128℄ and the Area-di�erene-elastiity model (A.D.E) whih allows the exhange of lipid moleules between the twomonolayers [138, 134℄.Consequently, the A.D.E model assumes that the area of eah individual lea�et isnot �xed, and then it an to streth introduing an extra ontribution to the Canham-Helfrih free energy. This ontribution is re�eted in a global area di�erene term:
(∆A−∆Ao), where ∆A = Aout −Ain is the area di�erene of the de�eted membraneand ∆Ao = Aout

o − Ain
o is the area di�erene of the relaxed initial state:

FADE[X] =

∫

Σ

dA [κ
2
(K −Ko)

2
]

+
πκ

2AD2
(∆A− ∆Ao) , (2.8)where κ is a nonloal bending rigidity, D is the onstant thikness of the membrane,and A is the area of the neutral surfae Σ. This additional term is also known asthe nonloal bending energy in literature. The e�et of strething has been studied in[97, 126℄. It has been able to explain the di�erent shapes adopted by a lipid vesileduring its shape transitions, like budding and vesiulation. In the next hapter thisfree energy will be reviewed in order to onsider the strutural variations ourring atthe joint between domains omposing an inhomogeneous membrane whih undergoesa phase separation of its lipid omponents. The free energy (2.8) must be minimizedsubjet to di�erent onstraints, like �xed enlosed volume V or �xed total area A,adding new terms to the free energy (2.7).2.1.5 Line tension energyIn some problems, the boundary of a lipid membrane may be in ontat with a substrate,a �uid interfae, or another elasti boundary, as in the ase of biphasi vesiles. At theinterfae additional stresses and torques must be onsidered. They are transmittedalong a line of ontat, in whih boundary onditions must be imposed.The equilibrium on�guration of an open membrane is obtained minimizing its totalfree energy, inluding edge e�ets. Simultaneously, the shape and the position of theboundary is loally adapted, minimizing the free energy. From a mathematial pointof view a ontat line is a urve C that represents the position of an interfae thatseparates two di�erent domains ourring at the membrane.For a urve on Σ, we de�ne a loal orthonormal frame adapted to C (see App. A).When two or more domains are in ontat a line tension tries to minimize the lengthof the ontat line that separates. A free energy that takes into aount this e�et may



24 Chapter 2: Geometry, Mehanis and Elastiity of Surfaesbe expressed as:
FL[Y ] =

∮

C
dl γ , (2.9)where γ is the line tension (whih an be a funtion of the oordinates). Here

Y = X(xa(y)) represents the embedding of the urve C de�ned in R
3, dl =

√
h dy isthe in�nitesimal length element, where h = (∂yY )2 is the indued metri on the urve.If we use the ar-length parametrization (y = s), then h = 1 and dl = ds.The free energy (2.9) has been studied for a ertain lass of problems whih involvesthe ontat between interfaes, like lipid adhesion to di�erent substrates [23, 44℄, theboundary onditions that must be satis�ed in a lipid membrane with an edge [27℄ or theshape transformation in a lipid inhomogeneous vesile whih exhibits a phase separationbetween its omponents [72℄.A nontrivial onsequene that arises by adding a free energy term like Eqn. (2.9)is the emergene of disontinuities aross the ontat line of some of the geometrialproperties de�ned on the surfae, like Gaussian or perpendiular urvature, as we willsee in Se. 2.3.2 for a general situation.Changes in line tension drives the shape transition observed in membranes [72℄.These hanges an appear when impurities modify the loal urvature at the ontatline, or if internal degrees of freedom are onsidered, as we will see in the next hapter. Inwhat follows, we will disuss how they an be inorporated into the previous formalism.2.1.6 Internal degrees of freedomTo desribe some proesses involving shape transformation in elasti membranes, likethe interation of protein inlusions, ell adhesion or phase separation of lipid om-ponents, the desription presented so far is not enough. Sometimes the mirosopiharateristis of the membrane are needed to desribe these features satisfatorily.The surfae an exhibit internal degrees of freedom, whih an ouple to the geometry.Vetor �eld. Tilt of lipid moleulesIn their rystalline state the mirosopial struture of a membrane is haraterized bythe tilt of the hydroarbon hains with respet to the membrane plane. This is the aseof the rippled (Pβ′) phase whih exhibits a long-range tilted order struture. However,even if the membrane is �uid, lipid tilt appears as a onsequene of di�erent biologiale�ets, like protein inlusions, boundary onditions imposed on the membrane, or thehydrophobi mismath at the joint between di�erent domains omposing the membrane.The tilt variable is introdued to desribe the fat that the average orientation n oflipids does not neessarily oinide with the unit normal N de�ned on Σ. In [67℄ it wasshown that only the tangential part of this vetor �eld is oupled with the geometry.We denote this tangential part as m = maea whih is not neessarily a unit vetor.To aount for the e�et of a tilt variable an additional free energy term must be



2.1. The Energetis of surfaes and interfaes 25onsidered:
Fm[X, ma] =

∫

Σ

dAf(ma) , (2.10)where the tilt energy density f(ma) is given by:
f(ma) =a1 (∇am

a) + a2 (∇am
a)K + a3 (∇am

a)2 + a4

(
∇bm

aKb
a

)
+ . . .

+ a5

(
∇am

b∇amb

)
+ a6(m

ama) ,
(2.11)and the oe�ients ai are related eah other. They are onneted beause tilt andbending deformations exert an equivalent strain on the membrane. On the other hand,additional terms an arise using symmetry arguments [104℄. In [101℄ a representativeexample of a tilt free energy is introdued. It inludes some terms that are onsideredin Eqn. (2.11). A free energy like this may be found in some referenes onsidering thee�et of orientational order in surfaes [94, 101℄.Salar �elds. Conentration and thiknessInternal degrees of freedom an be also inorporated through salar �elds depending onthe oordinates. These salar �elds an ouple to eah other and also to the geometry.They represent, for instane, the loal variation of lipid density [129, 4, 86℄, a loalvariation in some physial parameters desribing the membrane whih have been, sofar, onsidered as onstant, like the surfae tension, the bending rigidity, the saddle-splay modulus, the spontaneous urvature, or the thikness of the membrane [54℄.In some ases, it is su�ient to add to the geometrial free energy (2.7) a Ginzburg-Landau free energy term desribing, for example, inhomogeneities on Σ:

Fφ[X, φ] =

∫

Σ

dA [ξ
2

(∇φ)2 + V (φ) + ΛφK

]
, (2.12)where we have inluded a term that ouple the salar �eld φ with the extrinsiurvature by means of a oupling onstant Λ.A free energy of this type will be used in the next hapter to desribe the thiknessvariation at the joint of a biphasi vesile undergoing a phase separation. In thisase, other oupling terms an be added aounting for impurities onentration. Allthese terms will be oupled to eah other and with the geometrial large sale degreesof freedom. If the salar �eld φ represents the onentration of adsorbed moleules,like proteins, it is neessary to add a hemial potential µ to assure an equilibriumonentration with the environment.2.1.7 Global onstraints: Fixing volume or pressureIn general lipid membranes live in an aqueous environment whih is a soure of stressesand torques ating on Σ. In the ase of membranes omposed by a lipid bilayer thehydrophobi nature of hains fores the edges of the membrane to merge and form a



26 Chapter 2: Geometry, Mehanis and Elastiity of Surfaeslosed vesile. The volume of this losed vesile may be �xed to a onstant value Voand onsequently a free energy must be added to (2.7) to aount for this onstraint:
FV[X] = P (V − Vo) , (2.13)where P is the global osmoti pressure whih an be viewed as a Lagrange multiplierenforing the onstraint of onstant volume during the minimization proess of the freeenergy. It is also possible to �x the global pressure di�erene between the two sides ofthe surfae using the same expression for free energy. Indeed, both terms produe thesame equilibrium equations. Note that the onstraint (2.13) an also be expressed inthe following form:
FV[X] = P

∫

V

dV . (2.14)This expression an be ast in a di�erent form using the Gauss divergene theoremand the fat that ∇ · X = 3 in R
3:

FV[X] =
P

3

∫

Σ

dA (X · N) . (2.15)Here the volume is expressed as an integral over Σ := ∂V . The total volumeenlosed by the surfae Σ is an invariant in R
3. It is evident that the volume an beloally �xed by introduing a loal pressure �eld, whih an be expressed as a funtionof the oordinates. However, in this ase the expression Eqn. (2.15) is not longer valid.An interesting feature of this term is that it onstitutes a soure of surfae stresswhih depends on the position of the surfae X, as we will see in Se. 2.3.1.2.1.8 Loal onstraints: Tangential stressesSo far we have onsidered free energies in whih the minimization proess is arried outimposing some global onstraint, like �xed total area or �xed total enlosed volume.This proedure is performed with the help of Lagrange multipliers, whih an be iden-ti�ed with physial parameters of the membrane, like the onstant surfae tension λand the global pressure P , respetively.Nevertheless, under determined onditions the deformations ourring in an elastimembrane or plate, may be solved using the previous framework and also inorporatingloal onstraint ating on a geometri property, like the urvature or the metri [66℄.Examples in whih this formalism an be used inlude deformations, like patterns ob-served in paper sheets [8℄, or the depression of a irular sheet into a irular frame bythe appliation of a point fore to its enter [33, 34, 35℄.In the ase of elasti materials the isometri bending deformations are suh thatthey resist shear and strething. As a onsequene, the distane between points on themembrane remains �xed, and therefore the metri tensor is presribed to some �xed



2.1. The Energetis of surfaes and interfaes 27funtion gab. In [66℄ a geometri funtional is onstruted to represent this onstraint:
FLo[X] =

∫

Σ

dA Sab(x) (gab − gab) , (2.16)where Sab(x) is a set of Lagrange multipliers, de�ning a seond rank symmetritensor. A onstraint may be imposed on di�erent geometri funtions. Let us onsiderthe following funtional:
FC[X] =

∫

Σ

dA Sab(x)g
ab , (2.17)i. e. we impose a set of onstraints on the ontravariant omponents of the metritensor gab. The funtional (2.17) may represent the gradient of some salar �eld φ(x)de�ned on the surfae if we hoose the Lagrange multipliers Sab in the following form:

Sab(x) = ∇aφ∇bφ , (2.18)This struture will be useful in Se. 2.3.2 and in Chap. 3 to determine the equilib-rium equations and the jump onditions at the interfae between two domains ompos-ing a surfae.2.1.9 A general reparametrization invariant free energyAll the terms omposing the total free energy and depending on geometrial proper-ties of Σ alone may be onsidered in a general expression depending only on surfaesalars whih are onstruted using the metri, the urvature tensor and its ovariantderivatives [101℄:
FNL[X] =

∫

Σ

dA HNL(gab, Kab,∇aKbc . . .) , (2.19)This expression inludes higher order terms in urvature elastiity, likeK4, (∇aK∇aK),
R2, et. These terms appear in geometri models like the so-alled egg-arton mem-brane [62℄ or in energies desribing tubular strutures [56℄. They will not be onsideredin this thesis, and we will restrit ourselves to terms up to seond order in the urva-tures, like the Cahnam-Helfrih free energy.On the other hand, it will be useful to introdue a free energy that ouples a salarfuntion representing the possible inhomogeneities (hanges in lipid onentration orstrutural degrees of freedom like thikness variation aross the membrane) ourringon Σ with the geometrial properties. Then a general free energy desribing an elasti�uid surfae Σ with internal degree of freedom will be expressed by:

FΣ[φ,X] =

∫

Σ

dA HΣ(φ(x), gab, Kab) . (2.20)The reparametrization invariane feature of this free energy will impose some on-sisteny relations on the salar �eld φ(x).



28 Chapter 2: Geometry, Mehanis and Elastiity of SurfaesIn this thesis we assume that the variations δφ and δX will be always independentof eah other. 2.2 Surfae mehanisIn the previous setion we have presented the typial free energy terms that are used inthe literature when the shape of a surfae desribing a membrane must be determined.Either using its geometrial properties, inorporating their internal degree of freedomor implementing global and loal onstraints we are able to desribe the geometriproperties of the surfae by means of a minimization proess that implies the variationsof geometrial quantities.Equilibrium of stresses and torques ating on the surfae determine the shapeadopted by the membrane when boundary onditions are spei�ed. At the same time,if the shape is known, stresses and torques an be totally determined, beause they areenoded in the geometry of the membrane.Using the geometrial approah, there are two ways to determine the equilibriumshape equation. One approah use the variations of the geometri quantities (ea, N ,
gab, g, Kab, K, and R) indued by an in�nitesimal hange in the embedding funtions
X, [28, 29℄.Otherwise one an onsider the geometri quantities as independent variables anduse Lagrange multipliers to enfore the strutural relations between them. The formerhas been onsidered in [24, 142℄. The latter an be found in [64, 101℄. Obviously bothapproahes give the same results but, for the sake of simpliity, we brie�y outline thelatter. 2.2.1 The shape equationIn order to alulate the equilibrium shape equation of the surfae we must determinehow the free energy funtional Eqn. (2.20) hanges when an in�nitesimal variationin the embedding funtion is performed, X → X + δX. This deformation may bedeomposed into a tangential part and a normal part to Σ. It reads [24℄:

δX = Φaea + ΨN . (2.21)The response of the free energy surfae may be also deomposed in two parts, a �rstpart oming from tangential variations and the seond one from normal variations. Theentire expression inluding both ontributions is given by:
δFΣ[φ,X] =

∫

Σ

dA (EΣ · δX) +

∫

Σ

dA ∇aQ
a
Σ , (2.22)where E = EΣ(H)N +Aa

Σea is the bulk part of the variation and it orresponds tothe Euler-Lagrange derivative (E-L) of FΣ[X] with respet to the embedding funtions
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X times the fator g−1/2. As we will see in the ourse of this hapter the variationsof all the possible ontributions to the total free energy presented so far have the samestruture as Eqn. (2.22) and therefore hereafter we drop the subsript Σ.In this ase the tangential part omes from the variation of the geometri funtionsinluding inhomogeneous terms, for instane oupling terms between a onentrationfuntion φ and the extrinsi geometry of the surfaes, or the loal onstraints re�etedin the appearane of terms like Sabgab, where Sab(x) is a symmetri tensor dependingon the surfae oordinates. The vanishing of Eqn. (2.22) ditates the equilibriumonditions whih determine the shape adopted by the surfae. It implies that E = 0.If the free energy only depends on the geometri properties of Σ, as in the ase ofEqn. (2.19), then Aa = 0 is identially satis�ed. The shape equation is only determinedby the normal part of Eqn. (2.22). The equation E = 0 orresponds to the so-alledShape equation, aounting for the equilibrium of normal fores, i. e., it orresponds tothe Euler-Lagrange funtional derivative of H with respet to the normal deformationof the surfae.The last term in Eqn. (2.22) is a surfae integral over a divergene orrespondingto the Noether harge Qa assoiated with δX [24℄. Using the divergene theorem thisterm an be reast as a boundary integral. An expression for this term is obtained in[64℄ and reads:

Qa = −f a · δX + Habeb · δN , (2.23)where we have de�ned Hab = ∂H/∂Kab. The expression of Qa involves two on-tributions: one proportional to δX identi�ed as the surfae stress tensor f a, and theseond proportional to δN whih is related to the partial derivatives with respet tothe urvature tensor Kab. Here, we will onsider free energies like Eqn. (2.20) sine theinhomogeneities an easily be inorporated in this geometrial framework.Noether's theorem states that every ontinuous symmetry (a translational or rota-tional invariane) of a free energy implies a onserved urrent (the stress and torquetensors), when the equilibrium equations are satis�ed. In the next setion we exploitthe onsequenes of this theorem to obtain the expliit expressions for the stress andtorque tensor as funtion of the geometrial properties on Σ.2.2.2 Surfae stress tensorSo far we have onsidered arbitrary deformations of the embedding funtions X. If theboundary of the membrane is in�nitesimally translated by a onstant vetor δX = athen we have Ψ = a · N , and also Φa = a · ea. If we insert these expressions in Eqn.(2.22) we obtain:
δFT[X] = −a ·

∫

Σ

dA{E(H)N + Aaea + ∇af
a} . (2.24)This translation leaves the free energy invariant. The urrent Qa is a linear operatorating on Φa and Ψ [24℄. It an be expressed asQa = a·f a, where the vetor f a desribes



30 Chapter 2: Geometry, Mehanis and Elastiity of Surfaesthe non-vanishing omponents of the stress tensor on the surfae. This denominationomes from its similarity with the three-dimensional stress tensor arising in the lassialelasti theory [83℄. Even if no external fores are ating on Σ, the vetor f a exatlyrepresents the stresses in the surfae.The integral (2.24) must be equal to zero sine the vetor a an be arbitrarily hosen.As the surfae Σ is also arbitrary, the integrand must vanish at every point of Σ. Thuswe have:
∇af

a = E(H)N + Aaea . (2.25)Note that in the absene of external soures of stress, the equilibrium equation anbe written as a onservation law [24℄:
∇af

a = 0 . (2.26)The vetor f a may be deomposed into its tangential and normal omponents, whihde�nes the tensors fab and fa as follows:
f a = fabeb + faN . (2.27)Using the Gauss-Weingarten equations (see App. A.1.3) the surfae projetions of(2.25) are given by:

∇af
a −Kabf

ab = E(H) , (2.28a)
∇af

ab +Kb
af

a = Aa . (2.28b)The normal projetion (2.28a) is the shape equation, whih vanishes at equilibrium.The tangential projetion is a onsisteny equation on the stress omponents, whihindiates the reparametrization invariane of FT. When inhomogeneities or loal on-straints are onsidered the tangent vetor Aa may be ast as a divergene of a tensor
∇bM

ab. At equilibrium this implies that the tensor Mab is itself onserved [66℄.The method desribed in [64, 101℄ using auxiliary variables allows us to readilyidentify the terms ourring in the normal and tangential omponents of the stresstensor f a as well as the onservation laws assoiated with it. By means of an eliminationproesses of the Lagrange multipliers we obtain an expliit expression for fab and fa interms of the original geometrial variables:
fab = T ab −HacKb

c , (2.29a)
fa = −∇bHab , (2.29b)



2.2. Surfae mehanis 31where the ontravariant tensors T ab and Hab are de�ned by:
T ab := − 2√

g

δ(
√
gH)

δgab
(2.30a)

Hab :=
δH
δKab

(2.30b)In these expressions the funtional derivatives must be replaed by the partial one if
H does not depend on ovariant derivatives of Kab. Note also that H may be either HΣor HNL or any other of the ontribution so far presented and the Eqns. (2.30) remainvalid. 2.2.3 Surfae torque tensorLet us now explain how to obtain the torque tensor. We assume that the membrane Σundergoes a onstant in�nitesimal rotation b on its boundary: δX = b × X. In thisase we have Φ = b · (X × N) and Ψa = b · (X × ea). Note that the normal vetorhanges aording to δN = b × N . As in the ase of in�nitesimal translations, weinsert these expressions in Eqn. (2.22) to obtain:

δFT[X] = −b ·
∫

Σ

dA{E(H)(X × N) + Aa(X × ea) + ∇aτ
a} . (2.31)In this ase Qa = −b · τ a, where τ a is identi�ed as the ovariant onserved torquetensor ating on Σ. It reads:

τ a = X × f a + sa , (2.32a)
sa = Hab (eb × N) . (2.32b)The �rst term in Eqn. (2.32a) is a ontribution due to the ouple of the stress tensor

f a about the origin. The latter term is an intrinsi ontribution oming from urvatureterms and is given by the Eqn. (2.30b). Note that sa has always tangential omponentson Σ.Neither sa nor the ouple due to f a alone is onserved. As in the ase of thestress tensor, the integrand in Eqn. (2.22) vanishes pointwise on Σ (b is and arbitraryin�nitesimal angle) and then:
∇aτ

a = X × E , (2.33)whih in equilibrium E = 0. The Noether theorem requires that the divergene of
τ a vanishes identially on Σ:

∇aτ
a = 0 . (2.34)As an immediate onsequene of Eqns. (2.32a), (2.25) and (2.34) we have therelation:

∇as
a = f a × ea . (2.35)



32 Chapter 2: Geometry, Mehanis and Elastiity of SurfaesAs mentioned before the tensor sa has only tangential omponents.
sa = Sabgbcε

dced , (2.36)where εcd is the totally antisymmetri tensor ε11 = −ε22 = g−1/2 and ε12 = ε21 = 0(see App. A).To obtain the expressions for stress and torque tensor it was not required to assumethat the Euler-Lagrange equation was satis�ed on Σ. The only properties that havebeen used so far are the translational, rotational and reparametrization invariane ofthe free energy F .Another interesting feature of the stress and torque tensors is that they only dependon geometri properties of Σ when the membrane is not inhomogeneous or loallyonstrained. Otherwise, there are ontributions oming from internal degrees of freedomor loal onstraints imposed on Σ. In both ases the knowledge of solutions of the shapeequation allows us to determine in priniple, the fores and torques ating on the surfae.The spei� form of the shape equation E = 0, the tangential vetor Aa = 0 andthe stress and torque tensors f a, τ a, depend on the spei� hoie of the free energy(2.20). In the next setion we will present two useful examples that an analyzed usingthe previous formalism. 2.3 Some useful examplesIn this setion we illustrate through two examples the formalism introdued previouslyto desribe the mehanial and energeti properties of surfaes. These spei� exampleswill be useful in the next hapters. The �rst one shows how to inorporate a globalonstraint in the minimization proess of the free energy as an e�etive surfae stress.Some onepts and alulations of this example will be borrowed in Chap. 4. Theseond example onerns the jump onditions at a ontat line whih separates twodomains in a general inhomogeneous surfae. The analysis presented in this setionsis again general and inludes possible inhomogeneities of the surfae, loal onstraintsand tangential variations.2.3.1 Example 1: Global pressure di�erene as a soure of surfae stressLet us onsider a �uid surfae desribed by a free energy like Eqn. (2.20) whih enlosesa �xed volume V . With this onstraint, the total free energy depends not only onthe loal geometry but also on a term implementing the onstraint, whih has beenexplained in Se. 2.1.7. Then, the total free energy of this system is expressed by:
FT[φ,X] = FΣ[φ,X] + FV[X] , (2.37)The variation of the free energy FΣ[φ,X] given by Eqn. (2.20) may be arried outusing the formalism introdued in Se. 2.2. The general struture of this variation has



2.3. Some useful examples 33been already expressed in Eqn. (2.22). The normal part of the bulk term is:
EΣ(H) =KHΣ − (K2 −R)

(
∂HΣ

∂K

)
−RK

(
∂HΣ

∂R

)

− gab∇a∇b

(
∂HΣ

∂K

)
− 2Lab∇a∇b

(
∂HΣ

∂R

)
,

(2.38)where the fourth term on the r.h.s of the previous equation is the Laplae-Beltramioperator de�ned on Σ and the latter term is a gradient operator in whih Lab is aontravariant tensor that appears when the variation of the Gaussian urvature termis performed: Lab = Kgab −Kab. This tensor has a nie property in two dimensions:
∇aL

ab = 0.The remaining terms are funtions of both the mean and salar urvature of Σ. Forthe tangential part of the bulk term we have:
Aa

Σ = −
(
∂HΣ

∂φ

)
∇aφ , (2.39)whose ontribution is di�erent from zero, beause of the salar �eld appearing in

HΣ. The boundary term Qa
Σ is given by Eqn. (2.23) whih in turn depends on Eqn.(2.29) and Eqn. (2.30b). Here we give the expression of these three tensors. Thetangential omponent fab

Σ of the stress tensor reads:
fab

Σ = −gabHΣ +Kab

(
∂HΣ

∂K

)
+ gabR

(
∂HΣ

∂R

)
, (2.40)the normal omponent fa

Σ of the stress tensor f a
Σ is given by:

fa
Σ = −∇a

(
∂HΣ

∂K

)
− 2Lab∇b

(
∂HΣ

∂R

)
. (2.41)Finally the tangential omponents of the intrinsi torque tensor Hab

Σ is expressed as:
Hab

Σ = gab

(
∂HΣ

∂K

)
+ 2Lab

(
∂HΣ

∂R

)
. (2.42)As the surfae Σ must be losed (although this is not absolutely neessary), theboundary terms produed by the variation of the free energy FV[X] does not ontributeto the total boundary term. On the other hand, it is possible to show that its totalvariation leaves a normal term proportional to P . Hene in equilibrium onditionsthe normal Euler-Lagrange derivative of (2.37) must be equal to the onstant Laplaepressure P . Consequently the shape equation for a �uid surfae onstrained to remainwith a �xed volume during its deformation is EΣ(H) = P .The formalism used to desribe the geometrial properties of the shape, the stressand the torque tensors so far has been quite general and only uses invariane prop-



34 Chapter 2: Geometry, Mehanis and Elastiity of Surfaeserties of HΣ and therefore it may represent di�erent physial �uid surfaes, like lipidmembranes or soap �lms. However in some problems addressed in this thesis it will beneessary to speify the free energy density funtion HΣ.For instane, if we suppose that the �uid surfae is an homogeneous membrane andwe add a onstant surfae tension ontribution �xing the area of the surfae during thedeformation we obtain the ase of the Helfrih free energy, desribed by Eqn. (2.7).For this ase the shape equation is:
EH(H) = −κ∇2K +

1

2
κ(K −Ko)[(K −Ko)K − 2KabK

ab] + λK , (2.43)where σ = λ is a onstant imposing the global onstraint. Using the onservationlaw (2.26) the equilibrium ondition EH(H) = P is expressed as the surfae divergeneof the stress tensor whih in this ase is equal to the pressure times the normal vetor:
∇af

a = PN . (2.44)The stress tensor f a is alulated using Eqns. (2.29) and (2.30) whih have beenwritten in a general form in Eqns. (2.40), (2.41) and (2.42). If we speialize for thelipid membrane, the stress tensor is given by:
f a = {κ(K −Ko)

[
Kab − 1

2
(K −Ko)g

ab

]
− λgab}eb − κ(∇aK)N , (2.45)and the torque tensor reads:

τ a = X × f a + {κ(K −Ko)g
ab + κLab}(eb × N) , (2.46)Now we disuss an interesting feature of the volume term FV[X] whih has beenpreviously addressed in [65℄. In Se. 2.1.7 we have seen that the volume integral of alosed surfae is expressed as a surfae integral in whih the integrand is dependent onthe position X. If the surfae is not losed we need to analyze the behaviour of thevolume under variation of the open surfae path. This orresponds to the volume ofthe one with the apex at the origin of the referene system and the basis onsisting inthe surfae path.The �rst variation of this surfae path with respet to the in�nitesimal hanges ofthe embedding funtions δX is:

δFV[X] =

∫

Σ

dA P (N · δX) − P

3

∫

Σ

dA ∇a(f
a
v · δX) , (2.47)where the tensor f a

v has been introdued in [65℄:
f a

v = (X · ea)N − (X · N)ea = X × (N × ea) . (2.48)



2.3. Some useful examples 35The surfae divergene of this stress-like objet is proportional to the normal vetor:
∇af

a
v = 2N . (2.49)If we use this latter relation in Eqn. (2.44) a new e�etive stress tensor an bede�ned as follows:

f ae = f a − P

2
f a

v , (2.50a)
∇af

ae = 0 , (2.50b)where Eqn. (2.50b) means that f a
e is a divergene-free tensor, unlike the geometrialtensor f a (see Eqn. (2.44)).A onsequene of this struture is that the volume onstraint an be treated likeanother surfae onstraint. Some striking features appearing with this equivalene aredisussed in [65℄. For instane, the e�etive tensor is not translationally invariantbeause of its expliit dependene on X. However, the additional stress appearing dueto a onstant translation, does not ontribute to the external fore on a surfae path.This additional term an be ast in the following form:
f a

n = εab∇bJ , (2.51)where J is a vetor potential on Σ and εab is the two-dimensional anti-symmetriLevi-Civita tensor. It is obvious that the previous expression is also a divergene-freestress tensor, and therefore the additional term, arising from the translation of f a
e , is anull stress [65℄.2.3.2 Example 2: Contat line variation between surfae domainsAs a seond example we derive the equilibrium equations and the boundary onditionson the phase boundary between two oexisting domains omposing a losed surfae Σ.The domains an, for example, originate from a phase separation that ours on thesurfae. The total surfae is then separated in two regions, Σ1 and Σ2, whih meet ina urve C on Σ (see Fig. 2.2). This urve de�nes the phase boundary. The free energydesribing the surfae Σ will be omposed by di�erent ontributions, whih need not begiven expliitly. All results are parametrization-free and do not depend on the possiblesymmetries of the system.As mentioned earlier, a line tension energy appears in several ontexts. Some prob-lems dealing with the geometri properties of surfaes at ontat lines, as the adhesionof a �uid surfae to a rigid or a deformable substrate [23, 44℄, or the lipid membranewith a free edge [27℄ have been studied before, showing the appearane of disontinuitiesin ertain geometrial properties aross the ontat line. For instane, in the ase ofvesile adhesion to a rigid substrate, the normal projetion of the urvature tensor on

C exhibits a disontinuity in equilibrium.



36 Chapter 2: Geometry, Mehanis and Elastiity of SurfaesThe problem treated here has been addressed before in the spei� ase of a biphasilipid membrane in whih phase separation takes plae [19, 72℄. In these referenes it hasbeen shown that geometri quantities exist whose hanges are disontinuous aross theontat line: the balane of fores and torques inludes a ompliated relation betweenthe urvatures and the ontat line properties, like its geodesi or normal urvature.However, as was pointed out in [44℄ in more general ases the spei� form of thefree energy density H determines and restrits the numeber of quantities that must bedisontinuous, due to the integrability requirement for the total free energy.Hereafter the label i ∈ {1, 2} denotes the quantities belonging to eah domain. Thetypial Einstein's summation rules for the repeated index is not valid for the label
i. We assume that eah phase is desribed by a free energy density H(i)

Σ (φi, Ki,Ri)whih depends on the geometrial properties of Σi and on a possible internal degree offreedom that will be represented by a salar �eld φi(x) (see Eqn. (2.20)). We will alsoonsider a possible set of loal Lagrange multipliers S(i)
ab (x) imposing some onstrainton the omponents of the ontravariant metri g(i)ab (Eqn. (2.18)). Finally the totalfree energy of the system is ompleted by adding the three following terms: i) a linetension energy term like Eqn. (2.9) aounting for the ontat energy between domains,ii) a volume free energy term like Eqn. (2.14) if the volume enlosed by the domainsremains onstant during the deformation of Σ, iii) and a surfae tension energy termlike Eqn. (2.6), whih loally �xes the area of the surfae in eah domain. Then, thetotal free energy that desribes the biphasi losed surfae is:

FT[φ,X] =
∑

i=1,2

(
F (i)

Σ [φ,X] + F (i)C [X] + F (i)
σ [X]

)
− FV[X] + FL[X] , (2.52)The minimization of this funtional must be arried out with respet to the varia-tions of the funtions Xi, φi(x) and Y (y). The latter vetor represents the embeddingfuntions of the regular urve C and y is a parameter along the ontour. We �rst per-form the variation with respet to the embedding funtions X and Y . The response ofEqn. (2.52) with respet to an in�nitesimal variation δX, like that of Eqn. (2.21) anbe written as:

δFT[φ,X] =
∑

i=1,2

{
∫

Σi

dA(i) (E(i) · δXi) +

∫

Σi

dA(i) ∇aQ
(i)a} , (2.53)where E(i) = E (i)Ni + A(i)ae

(i)
a . The latter term in the previous equation an beast as a boundary integral on a losed urve. This term will determine the boundaryonditions at the interfae between both domains:

∫

Σi

dA(i)∇aQ
(i)a =

∮

C
dl laQ(i)a , (2.54)where la are the ovariant omponents of the vetor l. It is the outward normal to

C and therefore it points out of the surfae Σ2 in this ase (see Fig. (2.2)).
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Fig. 2.2: Sheme representing a surfae Σ omposed by two phases, Σ1 and Σ2 whih meet ina ontat line C. The geometry of this urve on Σ is also depited. The geometrialproperties of both domains an be deomposed in this tangential basis {t, l}. Notethat the unit vetor l is the outward normal to C and points out of the surfae Σ2.
φi and S

(i)
ab denote possible internal degrees of freedom ourring at eah domain.Now we will outline the variation of eah term omposing Eqn. (2.52). We startwith the line tension energy (2.9). The variation of the surfae on the urve an bedeomposed with respet to {t, l,N}, the basis adapted to both embeddings X and

Y . It reads:
δY = Φtt + Φll + ΨN , (2.55)where Φt = Φata and Φl = Φala and here we have used the relation ea = tat + lal.Normally the �rst term in Eqn. (2.55) is omitted beause if the line tension γ is aonstant it an be expressed as a divergene term over the losed urve and thereforeit an be assoiated with a reparametrization of the boundary. Here we onsider themost general variation and a variable line tension γ(y).The geometri properties of the surfaes Σi an be deomposed in this basis (seeApp. A.2.2). Using these de�nitions the variation of the ontat line free energy reads:

δFL[Y ] = [γ(y)t · δY (y)]yf

yi
−
∮

C
dl { 1√

h

(
dγ

dy

)
t + γκgl + γκnN

}
· δY , (2.56)where dl =

√
h dy is the line element on C whih is parametrized by y (y is notneessarily the ar-length parameter s). In Eqn. (2.56) the �rst term is zero beausethe urve is losed and thus yi = yf . The term κg(y) is the geodesi urvature of theurve and κn(y) is its normal urvature. The metri of the urve is given by h (seeApp. A.2 for more details).Now we perform the variation of the free energy (2.17) whih is related to the set



38 Chapter 2: Geometry, Mehanis and Elastiity of Surfaesof onstraints Sab:
δFC[X] =

∫

Σ

dA {ECN + AaCea} · δX +

∫

Σ

dA ∇aQ
aC , (2.57)where eah term of the previous expression is written as:

EC = KSabg
ab − 2KabSab , (2.58a)

AaC = 2∇bS
ba −∇a

(
gbcSbc

)
, (2.58b)

QaC = −
(
2Sab − gabgcdScd

)
(eb · δX) . (2.58)On the other hand, the variation of the surfae tension term (2.6) veri�es:

δFσ[X] =

∫

Σ

dA{σ(x)KN − (∇aσ)ea} · δX +

∫

Σ

dA∇a[g
abσ(x)(eb · δX)] , (2.59)where we have suppressed the label i in Eqns. (2.57) and (2.59), for simpliity.Finally note that in Se. 2.3.1 the variations of the global pressure di�erene term

FV[X] and the elasti free energy term F (i)
Σ [φ,X] have already been alulated. Theboundary term orresponding to the pressure energy is given by the seond part ofEqn. (2.47) but, as the total surfae is losed, this term does not ontribute to the totalboundary onditions. Even if this additional term is taken into aount it vanishesidentially beause the stress tensor f a

v onsists of quantities that are ontinuous at theinterfae (like X, ea and N).Following the struture of the Eqn. (2.53) the �nal result omes from the variationsof eah free energy ontribution. Colleting all these terms the normal part of the bulkterm ET(H) reads:
S

(i)
ab g

ab(i)Ki + σ(i)Ki +KiH(i)
Σ − 2Kab(i)S

(i)
ab − (K2

i −Ri)

(
∂H(i)

Σ

∂Ki

)

−

RiKi

(
∂H(i)

Σ

∂Ri

)

− g(i)ab∇a∇b

(
∂H(i)

Σ

∂Ki

)

− 2L(i)ab∇a∇b

(
∂H(i)

Σ

∂Ri

)

− P = 0 .

(2.60)The Eqn. (2.60) orresponds to the shape equation that must be satis�ed in eahdomain. The tangential part of the bulk term A(i)a imposes a relation between the loalsurfae tension σ(i)(x) and the salar �eld φi(x) in eah domain. It is given by:
−
(
∂H(i)

Σ

∂φi

)
∇aφi −∇aσ(i) + 2∇bS

(i)ab −∇a
(
g(i)bcS

(i)
bc

)
= 0 . (2.61)If σ(i) = λi is onstant, φi = 0 and S(i)

ab = 0 we obtain a purely geometri ase.The typial jump onditions at the interfae between domains have been obtainedin [72℄ for the ase of an axisymmetri losed vesile omposed of two phases. These



2.3. Some useful examples 39onditions will be modi�ed by the addition of a salar �eld and its spatial variations,whih represents some internal degree of freedom on the surfae. Now we will obtainthe jump onditions at C that must be satis�ed by Eqn. (2.52) in a parametrization-freeway. They will also be independent of any possible symmetry of the surfae Σ (liketranslational or rotational symmetries).From now on we introdue the following notation for the partial derivatives of thefree energy density H(i)
Σ (φ,K,R) with respet to its arguments:

G(i)
g =

∂H(i)
Σ

∂g
, g(x) ∈ {φ,K,R} , (2.62)At equilibrium the total free energy must be stationary with respet to the variationsof the ontat line and the embedding funtions X. Therefore the E-L equations mustbe satis�ed and the seond part of the ondition Eqn. (2.53) an be written as follows:

δFT[φ,X] =

∮

C
dl [laQ(2)aT +maQ

(1)aT −
{

1√
h

(
dγ

dy

)
t + γκgl + γκnN

}
· δX

]
,

=

∮

C
dl ∆IT[φ,X] , (2.63)wherema = −la are the ovariant omponents of the vetor m = −l, whih is normalto C, tangent to Σ and pointing out to Σ1. The term IT[φ,X] enodes the independentvariations that ontribute to the total ontat line variation. It orresponds to the sumof the variation of the line tension free energy and the boundary variation of the totalelasti free energy of eah domain omposing the biphasi surfae. It has the followingstruture:

∆IT[φ,X] = ∆St(t · δX) + ∆Sl(l · δX) + ∆SN(N · δX) + ∆Tt(l · δN) , (2.64)Now we determine eah ontribution. Before we proeed we introdue the followingnotations:
∆GK =

∂H(2)
Σ

∂K2
− ∂H(1)

Σ

∂K1
, (2.65a)

∆GR =
∂H(2)

Σ

∂R2
− ∂H(1)

Σ

∂R1
, (2.65b)

∆Sab = S
(2)
ab − S

(1)
ab . (2.65)Thus the �rst term in the expression (2.64) is given by:

∆St[X] = τg∆GK − 2κnτg∆GR − 2latb∆Sab −
1√
h

(
dγ

dy

)
, (2.66)where τg is the geodesi torsion of C. It is ontinuous aross the boundary. This



40 Chapter 2: Geometry, Mehanis and Elastiity of Surfaesrelation represents the equilibrium of the tangential fores ating in the diretion t. Itan also be identi�ed with the translation (t · δX) of the ontat line. Normally thisterm is disarded beause it is related to a reparametrization of the boundary urve
C. It ours when the free energy depends only on geometri properties of the surfae
Σ and when the line tension is not a onstant. Here it will be onsidered due to theinternal degrees of freedom and the onstraint imposed on the surfaes Σi. As wewill see in the next hapter this expression is identially zero in the axisymmetri asebeause τg = 0 and the line tension γ is onstrained to be a onstant. Note that if γis not a onstant the balane between both domains would break and lipids moleulesould migrate from one domain to another along the boundary.The seond term in Eqn. (2.64) is assoiated to the tangential translation desribedby (l · δX). It reads:

∆Sl[X] =H(2)T −H(1)T −K2⊥G(2)
K2

+K1⊥G(1)
K1

−R2G(2)
R2

+ R1G(1)
R1

− 2τ 2
g ∆GK − 2lalb∆Sab − γκg ,

(2.67)where the term Ki⊥ = lalbK
(i)
ab is the projetion of the urvature tensor onto thetangential basis (see App. A.2). The equation (2.67) represents the balane of thetangential fores ating in the diretion l.The third term in Eqn. (2.64) is related to the perpendiular translation (N · δX).It is given by:

∆SN[X] = ∇⊥∆GK − 2κn∇⊥∆GR + 2τg∇‖∆GR + 2∇‖ [τg∆GR] − γκn . (2.68)were τg and κn will always be onsidered as ontinuous quantities aross the bound-ary, unlike the perpendiular urvature term Ki⊥ whih is disontinuous. We have usedhere the two diretional surfae derivatives introdued in App. (A.2.2), ∇⊥ and ∇‖.The equation (2.68) expresses the balane of normal fores ating aross the surfae Σon C.Finally the fourth term in Eqn. (2.64) is given by:
∆Tt[X] = ∆GK − 2κn∆GR . (2.69)This term is assoiated with a rotation around the ontat line C and originatesfrom the variation (l · δN). It expresses the balane of torques ating in the tangentialdiretion t.The vanishing of the terms (2.66), (2.67), (2.68), and (2.69) give us the jump on-ditions at the interfae. In their derivation it has been assumed that τg, κg, κn areontinuous at the boundary, however the normal urvature in the diretion l, namely

K⊥, is not ontinuous.The boundary onditions derived here do not depend neither on the parametrizationnor on the possible symmetries of the losed surfae Σ. They allow us to explore therelation between the elasti oe�ients of eah domain and the line tension of the



2.4. Two-dimensional elastiity of elasti plates and shells 41boundary onneting both phases. In Chapter 3 we will study this problem in theaxisymmetri ase, when a phase separation takes plae in a biphasi lipid vesile,followed by a budding proess whih deforms the vesile.2.4 Two-dimensional elastiity of elasti plates and shellsSo far, the disussion has been foused to deal with �uid surfaes and its energetiproperties. For instane, a �uid membrane is an isotropi ontinuum whih annotresists in-plain shear strain. Aordingly, its main elasti and geometri features aredesribed (at mesosopial sales) by a bending free energy Eqn. (2.5) whih dependsonly on the invariants onstruted from the urvature tensor Kab, namely, the meanand Gaussian urvature.Otherwise, plates and shells are slender elasti bodies whih are able to endure bothbending and in-plane strain. In this setion we brie�y review the energeti and elastiproperties of these strutures. For this purpose, di�erential geometry of surfaes is themost appropriate formalism.In most ases the elasti energies desribing these thin strutures are based onthe well established three dimensional nonlinear elasti theory of bodies [106℄. Thedimensional redution of this theory is arried out using various assumptions, suhas small deformations, small de�etions, and parallel stress to the midsurfae. As aresult, an e�etive two-dimensional elasti energy results whih allows to desribe thegeometrial and elasti properties of these thin bodies by means of their mid-surfaeon�guration.This theoretial bakground will be useful in Chapter 5, where an experimental setupis presented whih allows us to study the paking of thin elasti ylindrial sheets, andalso in Chapter 4, when the elasti behavior of non-Eulidean growing sheets will beonsidered. 2.4.1 Elasti platesHere we use the term plate to denote a thin elasti body of onstant thikness h, whihis planar in its rest state and bears no strutural variation aross its thin dimension.During the past deades the properties of elasti plates have been intensively stud-ied experimental, numerial and theoretially. From a theoretial point of view sometypial features like rumpling, bukling or raking have been well understood usingthe nonlinear Föppl-von Karman equations (FvK) [60, 136℄. These equations ome fromthe minimization of an elasti free energy whih is the sum of bending and strethingterms [83℄. The bending energy, whih is ubi in h, onsiders the urvature of thedeformed plate and aounts for the out-plane deformations. On the other hand, thestrething energy is proportional to h and desribes the in-plane deformations:
FFvK [ξ] = Fb[ξ] + Fst[ξ] , (2.70)
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Fb[ξ] =

1

2
κo

∫

D
{(△ξ)2 − 2(1 − ν)[ξ, ξ]} dxdy , (2.71a)

Fst[ξ] =
h

2

∫

D
σabuab dxdy , (2.71b)

κo =
Eh3

12(1 − ν2)
, (2.71)where κo is the bending modulus, E is the Young modulus and ν is the Poissonratio. In the strething energy term uab is the two dimensional strain tensor and σaborresponds to the stress tensor. Both tensor and the braket [·, ·] used Eqn. (2.71a)are de�ned by:

uab =
1

2

(
∂ua

∂xb

+
∂ub

∂xa

+
∂ξ

∂xa

∂ξ

∂xb

)
, (2.72a)

σab =
E

1 − ν
[(1 − ν)uab + νuccδab] , (2.72b)

[f, g] =
1

2

∂2f

∂x2

∂2g

∂y2
+

1

2

∂2f

∂y2

∂2g

∂x2
− ∂2f

∂x∂y

∂2g

∂x∂y
, (2.72)where ua stand for the omponents of the displaement vetor (a, b ∈ {1, 2}). Theelasti energy (2.70) is obtained by means of a dimensional redution proess usingthe Kirhho�-Love assumptions [92℄, whose validity is widely disputed. However, theFvK equations have been rigorously derived from three-dimensional elastiity using anasymptoti expansion method [38℄, were the thikness h is the expansion parameter.The equations arising from the minimization of Eqn. (2.70) are highly nonlinearand its resolution is a very hard task. However, some progress has been ahieved in thease of singularities that arise when an elasti sheets is submitted to a puntual load.For instane in [8℄ the geometry of a d-one is studied in detail (a d-one is a solutionof FvK equations) some saling relations are obtained for the ore size of the d-one in[33℄. From an experimental point of view, the mehanial stability, shape and energyof this onial singularity have been haraterized in [35, 36℄.

2.4.2 Elasti shellsA shell is a two-dimensional struture whose initial rest on�guration is not planar.This is beause it exhibits a strutural variation aross its thin dimension. Here wedesribe the Koiter shell theory whih, as in the ase of elasti plates, omes fromthe 3D nonlinear elasti theory. By means of a dimensional redution proess, a freeenergy that aounts for bending and strething deformations of the shell is derived.This elasti energy is obtained, assuming that both stresses and strains are parallel to



2.4. Two-dimensional elastiity of elasti plates and shells 43the deformed mid-surfae Σ during the deformation. This free energy reads [75, 39℄:
FK [u] =

h3

24

∫

Σ

dA Aabcdbab(u)bcd(u) +
h

2

∫

Σ

dA Aabcdεab(u)εcd(u) , (2.73)where u orresponds to the displaement vetor u = X−X , dA =
√
gdx1dx2 is thein�nitesimal area element on Σ, the initial rest on�guration. Hereafter, the bar denotesquantities assoiated with the initial on�guration. The raising and lowering of indiesis only de�ned with respet to the referene metri gab, even for tensors de�ned in theurrent deformed state. Aabcd stand for the ontravariant omponents of the elastitensor whose struture is imposed by the assumption of spatial isotropy. bab(u) arethe ovariant omponents of the mixed urvature tensor whih aounts the hangesin the urvature tensor assoiated with the displaement vetor. εab orrespond tothe ovariant omponents of the strain tensor evaluated at the midsurfae, aountingfor hanges in the metri tensor with respet to the displaement vetor. All thesequantities are expressed by:

Aabcd =
E

1 + ν

(
ν

1 − ν
gabgcd + gacgbd

)
, (2.74a)

bab(u) = Kab(u) −Kab , (2.74b)
εab(u) =

1

2
(gab(u) − gab) , (2.74)where again E is the Young modulus and ν is the Poisson ratio of the shell.The elasti response of shells and plates under di�erent deformations is quite di�er-ent. This is a onsequene of the underlying geometry of the initial rest on�guration.Thus, whereas a plate an almost always be bend weakly without strething, this is notpossible for elasti shells, for whih strething and bending our simultaneously. Ingeneral surfaes with positive Gaussian urvature (KG > 0) exhibit loalized patternsdeformation (like points or urves), in whih the strething energy is highly onen-trated. These patterns onnet regions in whih the surfae is isometri, that means,the measure of lengths is preserved during the deformation. This striking behavior hasalso been observed in the ase of developable surfaes i.e, surfaes with zero Gaussianurvature (KG = 0). An example is the rumpling of paper [8℄. Otherwise, surfaeswith negative Gaussian urvature (KG < 0) display a very di�erent behavior showinga nonloal onentration of strething during their deformations [133℄.In the next hapters we will use the formalism introdued in this hapter to solveproblems that involve �uid surfaes that resist strething, but that inorporate inter-nal degrees of freedom and elasti growing surfaes, in whih strething is ruial todetermine the energeti properties and the energy onentration.
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Chapter 3LINE TENSION AND BUDDING OF BIPHASIC VESICLESInhomogeneities in the ell membrane give rise to loalized interations at theinterfae between domains in a two-omponent vesile. The orresponding energyis expressed as a line tension between the two phases. In this hapter we will studythe onditions under whih this line tension an destabilize the domains whenbudding ours in inhomogeneous vesiles. The onsequenes of the adsorptionof impurities will also be examined, our sope being the extension of the Helfrihmodel to elasti deformations and hemial interations arising at mirosopisales. 3.1 IntrodutionAs we have seen in Se 1.1 the membrane of lipid vesiles onstitutes a simpli�ed systemin whih some basi harateristis of the real ell membrane an be studied. Amongthem, we have mentioned the formation of ordered domains (sometimes alled rafts orliquid ordered domains) whih have been experimentally observed in a ternary mixtureof lipids in GUVs. They are essentially omposed of holesterol and sphingolipids (orphospholipids).Domain formation is a onsequene of a phase separation ourring in the lipidvesiles. This an be triggered by various external physial fators, like temperaturehanges or osmoti pressure hanges. It has been shown that this phase separationan trigger a shape transformation of the vesile, leaving as a result its budding andpossibly the �ssion of the ordered domain.Most of the experiments suggest that budding and �ssion in lipid vesiles an beexplained by the physial properties of the membrane. As a onsequene the buddingproess has been studied theoretially in several works [87, 88, 71, 72℄ in whih thegeneri mehanism that predits the domain formation is governed prinipally by theline tension of the domain boundaries. This mehanism is also modulated by the spon-taneous urvature and the bending rigidity of eah membrane domain. The in�ueneof the size of the buds during the budding has also been studied. Line tension tries toredue the length of the interfae between domains and therefore favors the formationof buds. It is thus important to understand whih fators allow the variation of theline tension between domains in a biphasi vesile. This is the matter of study of this



46 Chapter 3: Line tension and budding of biphasi vesileshapter3.2 Properties of the ontat line between domains. LinetensionWe now fous on the ontat line between domains omposing a biphasi vesile. Whentwo or more domains are in ontat a free energy proportional to the length of thedomain boundary must be added in order to take into aount the energeti ost ofpossible hanges for the interfae length.Line tension is a quantity that depends not only on hemial properties of the lipidspeies omposing both domains but also depends on the mehanial state of eahdomain. At length sales omparable to the membrane thikness the interfae exhibitsstrutural variations whih ome from short-sale elasti degrees of freedom, like themathing of thiknesses [61, 85℄ or the tilt of lipid moleules [82℄.Typially liquid-ordered domains are thiker than the surrounding membrane. Anabrupt step between domains would expose the lipid tails to the surrounding waterwhih is prohibited beause of their hydrophobiity. This indues a distortion whihimplies the tilt of the lipid moleules. As a onsequene there is an energy assoiatedwith the elasti deformations of both domains at the interfae (see �g 3.1(a)). Thisstrutural di�erene indues a line tension energy, subjet of study of this hapter.In the unrealisti ase of the step juntion the energy per unit length of suh amismath has been estimated in [87℄ (see Fig. 3.1(a)). When the height mismathis ∼ 0.5 − 1[nN ] (i.e 10 % of the total height), the line tension energy is ∼ 10[pN ].Now if the surfae is deformed at the interfae these values are muh smaller. In [82℄it has been estimated to be of order ∼ 1[pN ]. In this ase the prinipal ontributionomes from the elasti deformation of lipids in the narrow region of the ontat line(see 3.1(b)). The thiker raft dereases its thikness and the thinner domain inreasesit. The onsequene is a redution of the boundary energy.Line tension has been experimentally dedued in [14, 15℄ from the shape of biphasivesiles using typial values for the osmoti pressure and the elasti onstants. Theestimated values are ∼ 0.5[pN ] whih is in favour of a dilute interfae.Several fators may in�uene the e�etive line tension variation between domains.For example, in ref [2℄ the e�et of lateral surfae tension on the interfaial energyis studied. It has been shown in the ase of height mismath that the appliation oflateral tension produes an inrease of the line tension whih depends on the valuesof the spontaneous urvatures of eah domain. Height mismath is determined notonly by lipid ompositions but also by the mehanial onditions at equilibrium. Inthis hapter we study the onsequenes of mehanial distortions due to the heightmismath between phases. We show that they modify the line tension.In all the referenes ited so far, the slope of the neutral surfae membrane hasbeen onsidered as ontinuous at the interfae. This assumption is not realisti in allsituations, beause monolayers that ompose the ell membrane an exhibit a very pro-
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(a) Step-like shape (b) Continuous deformed shapeFig. 3.1: Struture of domains shapes at the interfae. Image extrated from [2℄nouned asymmetry. This asymmetry (besides the strutural di�erene between lipidsomposing both domains) modi�es the energeti properties and destabilizes the domainsin budding and �ssion proesses. Note that ells exhibit asymmetry between monolayersontrary to vesiles whose monolayers are symmetri so this e�et is important.If the membrane has monolayers whih strongly di�er, the usual desription in-volving Helfrih elastiity must be modi�ed. The mesosopi desription is no longervalid at sales omparable to a few times the membrane thikness (≃ 10nm). In theneighborhood of the joint between membrane domains there are elasti degrees of free-dom whih are exited. These short-sale internal properties are related to the heightmismath between the domains [54℄ and the tilt of lipid moleules [67, 82℄.In the next setion we will see how to take into aount the strutural variation at theinterfae between domains modifying the usual Helfrih elastiity whih desribes theequilibrium properties of the membrane. The thikness of the bilayer will be introduedas a variable representing the height mismath.3.3 Modifying Helfrih elastiityThe aim of this setion is to show how we an take into aount the struture atthe interfae from a marosopi (ontinuous) point of view. The oupling betweeninternal degrees of freedom, represented by the thikness variation aross the neutralsurfae and the marosopi degrees of freedom related to the surfae geometry (likemean and Gaussian urvatures) will be dedued using only arguments of elasti andgeometri nature. Dedutions will be performed from �rst priniples, onsidering theelasti deformations assoiated to the di�erent struture of eah lipid moleule, andreferring it to the neutral surfae.Furthermore the dedutions will be performed without taking into aount theparametrization or the possible symmetries of the biphasi vesile. Later we will spe-ialize our �ndings to the ase of a losed biphasi axisymmetri vesile.
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(a) Strutural thikness variation at theinterfae in a GUV when budding o-urs. The inset is the nek region whihhas been enlarged. (b) Another stage of budding in a bipha-si vesile. Peanut shape.Fig. 3.2: Equatorial setion showing two �uid phases oexisting in a GUV. Images extratedfrom [15℄.

Fig. 3.3: Sheme representing the strutural height mismath at the interfae between twodi�erent lipid domains. Extrapolated neutral surfaes do not agree at the joint, Inontrast to the usual Helfrih desription. Courtesy of J. B. Fournier.Unlike Chap. 2 during the ourse of this hapter we will use the mean urvature Hand the Gaussian urvature KG instead of the trae of the extrinsi urvature tensor
K and the salar urvature R, respetively. We note that they are simply onnetedby the relation K = 2H and R = 2KG.3.3.1 Coupling between thikness and urvatureThe membrane of the biphasi vesile will be onsidered as an anisotropi elasti on-tinuum omposed of two phases, eah denoted by the label {i = 1, 2}. Both phases



3.3. Modifying Helfrih elastiity 49will be desribed by the same type of elastiity and they will only di�er in the valueof physial oe�ients, like Gaussian or bending sti�ness. Hene in this setion we willsuppress this label. In turn, eah phase onsists of two lipid monolayers (from now eahdenoted by the label {I = ±}). This elasti ontinuum an undergo di�erent types ofelasti deformations, suh as strething and bending.We suppose that the oupling terms arise from two ontributions. A �rst ontribu-tion is related to a non-homogeneous bending energy whih an be haraterized by atwo-dimensional gradient of the thikness, ∇au, ourring in the total free energy. Aseond term omes from a loal area-di�erene elastiity between both lipid monolayersthat ompose eah membrane domain.From Fig. 3.4 we see that the hydrophili (outer or inner) surfae is a dividingsurfae situated at the region of ontat between the lipid heads and water. To desribethe thikness variation at the interfae we assume that the normal distane betweenthe neutral surfae Σ and the hydrophili surfaes Σ(+) (resp. Σ(−)) of the outer (resp.inner) lea�et is a funtion of the oordinates de�ned on Σ (see Fig. 3.4 for de�nitions).We will denote this distane as η(+) (resp. η(−)). In this way, the thikness of thebilayer is de�ned as u(x) = η(−)(x) + η(+)(x).The hoie of the neutral surfae as referene surfae is onvenient beause strethingand bending are independent when they are de�ned with respet to Σ. As a onsequenethe area of the neutral surfae does not hange during the deformation of bending.The strething and bending terms that we will onsider here for eah phase are thenexpressed by:
F [X(±)] =

∮

Σ(+)

dA(+)f (+) +

∮

Σ(−)

dA(−)f (−) , (3.1a)
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2H(I) −H(I)
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)2
, (3.1b)where A(I) is the surfae area of eah side (inner and outer), A(I)

o is the preferredarea of eah monolayer, H(I) is the mean urvature, κ(I) is the bending sti�ness and
K(I) is the area-strething elastiity oe�ient. Note that in the expressions (3.1a) and(3.1b) we have again removed the label i.The in�nitesimal area element dA(I) (resp. inner and outer) is related to dA whihis de�ned on the neutral surfae, by means of an expansion to leading orders (see App.B):
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)
. (3.2)Introduing these relations in (3.1a) we obtain the free energy density (see App. Bfor a detailed derivation) at dominant order in u for eah phase:
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2 + κKG + 2ΛHu+ u2KGδ + λ , (3.3)



50 Chapter 3: Line tension and budding of biphasi vesileswhere the oe�ients κ, κ, Λ, δ and λ depend on the mirosopi oe�ients A(I)
o ,

κ(I), H(I)s and K(I) haraterizing eah monolayer.Thikness variations beome important at the joint between domains. We onsiderthese ontributions inluding a term in the free energy where inhomogeneities in ur-vature indue hanges in the (inner and outer) hydrophili surfae.Thikness variation and bending deformation in the bilayer give an inrease of thearea of both hydrophili (inner and outer) surfaes. We will assume that the hange offree energy per moleule arising from the extension of the hydrophili surfaes is simplyproportional to this extension and therefore [77℄:
f

(I)
nh = ξ(I)∆A(I)

nh , (3.4)where A(I)
nh is the area of eah hydrophili surfae and ξ(I) is a oe�ient havingthe dimensions of a surfae tension. Then, at the lowest order, we derive the followingexpression (see App. B):
f

(I)
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aξ(I)(1 −Hη(I) −KGη(I)2 − ...)(∇η(I))2 ≃ 1

2
aξ(I)(∇η(I))2 . (3.5)Note that using the de�nition (3.4) we have isolated the ontribution of inhomoge-neous bending from the homogeneous one.The Helfrih model does not onsider mean or Gaussian urvature gradients. How-ever it is possible to generate salars in the free energy density whih depend on deriva-tives of the surfae urvature [62℄ in order to prevent the ourrene of in�nitely sharpurvature hanges. Then, we have:

Hnh =
1

2
κnh(∇aH)(∇aH) . (3.6)Note that the importane of this term depends on whether or not the urvaturehanges signi�antly on length sales omparable to lg, a harateristi length whih isgiven by: lgr :=

√
κgr/κ. A similar inhomogeneous bending term has been also used todetermine the persistene length in a surfatant monolayer [77℄.So far, we have established the oupling terms and the thikness variation ontri-bution to the free energy. Finally, there is a ost to pay when the distane between thetwo lea�ets varies from ao given by the hemial interations between lipids. To takeinto aount this e�et to leading order we assume an harmoni-like energy:

f
(i)
ch =

1

2
Bi(ui(x) − aoi)

2 . (3.7)Note that the energy density (3.7) is already written for the entire bilayer of a givenphase (although a similar expression must be valid for eah monolayer). For the restof the ontributing terms the energy of the bilayer of eah phase is simply the sum ofeah monolayer ontribution, rede�ning the respetive oe�ients.
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Fig. 3.4: Shemati representation of a monolayer with inhomogeneous urvature. The neutralsurfae is denoted as Σ, and the hydrophili surfae is Σ+. Their normal vetors are
N and N+ respetively. Note that in this ase, the shema depits the external lea�etof the bilayer. Σc is a region denoting the position of the base of the hydroarbonhains. The area per lipid moleule on the hydrophili surfae is a+, and its area onthe neutral surfae is a. The normal distane between the Σ and Σ+ at a given point
x is denoted by η+(x). Note that as a onsequene of the non-homogeneous bendingthe normal vetors N and N+ are not parallel, exhibiting a nonzero angle ω. Thegeneralization to the inner monolayer is obvious.3.3.2 Total free energy of the biphasi vesileConsidering all the ontributions introdued in the previous setion, the total freeenergy of the system an be expressed as:
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∑
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γdl , (3.8)where the label {i = 1, 2} denotes eah phase. The previous expression is equivalentto:
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γdl , (3.9)where the terms f (i)

α , with α ∈ {1, 2, 3}, represent the di�erent ontributions to thefree energy in eah domain. First, we have the lassial desription given by the Helfrihmodel aounting for the large sale elasti deformations:
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2 + κiKGi + λi , (3.10)in whih λi stands for the onstraint of onstant global area during the deforma-



52 Chapter 3: Line tension and budding of biphasi vesilestion. In addition, we have a strutural free energy density aounting for the innerdeformations of the membrane. They are desribed by the thikness funtion u(x) andits variation along the neutral surfae Σ:
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2
ξig

ab∇aui∇bui . (3.11)Note that in the previous equation the free energy density is expressed as a funtionof ui and not as a funtion of η(±). The total free energy assoiated with inhomogeneousbending is the sum of eah monolayer ontribution, given by the term (B.24). As isshown in App. B the de�nition of the neutral surfae Σ allow us to express a onditionbetween η(+), η(−) (see Eqn. (B.6)). This relation and the de�nition u = η(+) + η(−)imply that both η(+) and η(−) are proportional to u and therefore the gradient term inEqn. (3.11) is expressed as a funtion of u.Although the thikness variation ours at length-sales of order of a few nanometers,we keep a ontinuous desription for the possible elasti deformations of the membrane,inluding strething and non-homogeneous bending. Finally we have a third ontribu-tion that takes into aount the interation between the thikness variations and thelarge sale elastiity. It is given by the term:
f

(i)
3 = 2ΛiHiui + δiu

2
iKGi , (3.12)whih ouples u(x) with the geometrial desription of the membrane, representedby its mean and Gaussian urvatures. The volume integral in (3.9) expresses the on-straint of onstant volume during the deformation (whih is enfored by a Lagrangemultiplier P ). The last term is a line tension free energy aounting for the mirosopiinterations at the ontat line C between both domains (whih arise e. g. from van derWaals fores between lipid moleules).In summary we have a two-omponents lipid vesile where eah phase is desribedby a large sale free energy given by the Helfrih model and a strutural mirosopifree energy aounting for the internal deformations and expressed by the thiknessvariation of the membrane. The model is ompleted adding a line tension energy anda global pressure di�erene energy, whih stands for the onstant volume ondition.Note that this problem has already been addressed in Se. 2.3.2, but the exatenergeti properties of the biphasi surfae have not been spei�ed. In order to relateboth setions and take advantage of the results obtained in Se. 2.3.2, we an identifythe terms omposing the total free energy given by Eqn. (2.52) with the terms presentin Eqn. (3.9).Thereby, the term HΣ given in Eqn. (2.20) reads:

H(i)
Σ [ui(x), Hi, KGi] =

1

2
κi(2Hi −Hsi)

2 + κiKGi + 2ΛiHiui + δiu
2
iKGi , (3.13)where we have identi�ed the salar �eld φ(x) as the thikness funtion u(x) and, asmentioned earlier, the marosopi elasti desription is given by the Helfrih model.



3.4. Equilibrium equations, boundary onditions and jump onditions 53For the term related to the surfae tension Hσ (see Eqn. (2.6)) we write:
H(i)

σ [ui(x)] = λi +
1

2
Bi(ui − aoi)

2 , (3.14)where the loal surfae tension term σi(x) an be identi�ed as the sum of the on-stant surfae tension λi (imposing the onstraint of loal surfae area Σi during thedeformation) and the term that stands for the hemial interation between lipids.Finally the term assoiated with the loal onstraints HC (see Eqn. (2.17)) is givenby:
H(i)C [∇aui(x)] =

1

2
ξig

ab
i ∇aui∇bui , (3.15)where again we have identi�ed φ(x) with u(x). In this ase we have interpreted thesquare of the thikness gradient as the omponents of the onstraints tensor Sab (seeEqn. (2.18)):

S
(i)
ab =

1

2
ξi∇aui∇bui . (3.16)We also de�ne the total free energy per unit of area as:

H(i)T = H(i)
Σ + H(i)C + H(i)

σ . (3.17)Having identi�ed eah term omposing the free energy (3.9) and their relation withthe free energy given by Eqn.(2.52) in the next setion we will derive the Euler-Lagrangeequations for eah domain and the jump onditions at the ontat line between them inthe ase of a biphasi vesile. We will fous spei�ally in the axisymmetri ase whihhas been observed in several experimental situations [14, 15, 117, 124℄.3.4 Equilibrium equations, boundary onditions and jumponditions3.4.1 Equilibrium equationsTo obtain the Euler-Lagrange equations, we must alulate the variation of (3.9) withrespet to the variation of both, the position vetor δX(xα), and the thikness �eld
δu(xα). Here it will be assumed that both variations are independent from eah other.This is possible beause both have di�erent physial origins. Thikness variation arisesfrom the exitation of elasti internal degrees of freedom, like the tilt of lipid tails [67℄or the di�erent hemial omposition of lipid moleules in eah domain. On the otherhand δX is a geometrial elasti variation assoiated with a marosopi degree offreedom and it an appear as a onsequene of an external deformation.The variations with respet to δX have already been studied in Se. 2.3.2. Herewe only adapt these results to the ase of a biphasi elasti membrane with internaldegree of freedom. Aordingly, the equations (2.60) and (2.61) orresponding to the



54 Chapter 3: Line tension and budding of biphasi vesilesequilibrium of normal and tangential fores respetively, read:
−1

2
∇2

sGH −∇2

sGKG −
(
2H2 −KG)GH − 2HKGGKG + 2HHT − ξKab∇au∇bu = P ,(3.18a)(

ξ∇2
su− Gu

)
∇au = 0 , (3.18b)where ∇2

s is the Laplae-Beltrami operator de�ned on Σ, ∇2

s is a di�erential operatorating over salar �elds de�ned on Σ. It is de�ned by:
∇2

sφ = K∇2
sφ−Kab∇a∇bφ , (3.19)As in Se. 2.3.2 we denote Gg the partial derivatives of the free energy density

HΣ(u,K,KG) with respet to its arguments:
Gg =

∂HΣ(u,H,KG)

∂g
, g(x) ∈ {u(x), H(x), KG(x)}. (3.20)For the ase of the biphasi vesile we have:

GH = 2κ(2H −Hs) + 2Λu , (3.21a)
GKG = κ+ u2δ , (3.21b)
Gu = 2ΛH + 2δKGu . (3.21)The equation (3.18a) orresponds to the equilibrium of normal fores on the surfaesand (3.18b) represents the equilibrium of tangential fores ating on eah phase of thesurfae. The E-L equation orresponding to the variations of thikness reads:

−ξ∇2
su+ 2ΛH + 2δuKG +B (u− a0) = 0 . (3.22)Finally, the urrent Qa

u assoiated with the variations δu is given by:
Qa

u = gab∂bu, (3.23)and therefore the equilibrium of fores assoiated with this variation at the ontatline is:
∆Fu = ∇⊥ (u2 − u1) , (3.24)where ∇⊥ is the surfae derivative in the diretion l (see App. A.2)3.4.2 Boundary onditions at the interfaeAt the joint three ontinuity equations must be satis�ed:

X
(±)
2 |C= X

(±)
1 |C , X

(±)
i = Xi ± η

(±)
i (x)Ni . (3.25)
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∇aX2 |C= ∇aX1 |C , a ∈ {1, 2} , (3.26)The two �rst relations indiate that the polar head of eah monolayer at the hy-drophili surfae must math at the ontat line. As before, the symbols (±) representthe outer and inner hydrophili surfaes, respetively. The third ondition is neessaryto assure the �niteness of the total free energy, beause they depend on the square ofthe mean urvature, 2H = (∇a∇aX) · N .

3.4.3 Jump onditions at the interfaeThe jump onditions that have been obtained in Se. 2.3.2 an be expressed for thease of the biphasi vesile. In equilibrium they entail the balane of the fores andtorques ating at the ontat line C in di�erent diretions. In order to determine thethese onditions we need to speialize the expressions given by Eqns. (2.65) along withother useful expressions using the free energies (3.13), (3.14) and (3.15). Thus we have:
∆GK = ∆κK‖ + κ2K2⊥ − κ1K1⊥ − ∆Ko + Λ∆u , (3.27a)

∆GR =
∆κ

2
+
δ

2
(u2

2 − u2
1) , (3.27b)

latb∆Sab =
ξ

2

[
∇‖u2∇⊥u2 −∇‖u1∇⊥u1

]
, (3.27)

lalb∆Sab =
ξ

2

[
(∇⊥u2)

2 − (∇⊥u1)
2
]
, (3.27d)

∆HC =
ξ

2

[
(∇⊥u2)

2 − (∇⊥u1)
2 + (∇‖u2)

2 − (∇‖u1)
2
]
, (3.28)

∆HC = ∆λ+
B

2

[
(u2 − ao2)

2 − (u1 − ao1)
2
] (3.29)where we have supposed by simpliity that the oe�ients (Λ, δ, B and ξ) havethe same value in both domains. We have also de�ned the following quantities: ∆κ =

κ2 − κ1, ∆λ = λ2 − λ1, ∆κ = κ2 − κ1, ∆u = u2 − u1 and ∆Ko = κ2Hs2 − κ1Hs1. Alsonote that K‖ = K1‖ = K2‖ = −κn and K⊥‖ = K2⊥‖ = K1⊥‖ = τg i. e., these quantitiesare ontinuous aross the boundary line. From now on we assume that the line tensionis a onstant.With these expressions we an determine the jump onditions at the interfae ofthe biphasi vesile They are parametrization-free and independent on symmetries.However, we are interested in axisymmetri deformations of this system and thereforeby simpliity we will express the onditions in this symmetry.



56 Chapter 3: Line tension and budding of biphasi vesiles3.5 The axisymmetri biphasi vesileNow fousing on losed axisymmetri biphasi vesiles (see Fig. 3.5), we de�ne ylin-drial oordinates (r, ϕ, z) where z represents the height, ϕ is the revolution angle and
r is the distane between the symmetry axis z and the surfae of revolution Σ of thebiphasi vesile. The geometri relation between the oordinate and the tangent angleover the surfae is r′(z) = cotψ(r), where r′(z) denotes the derivative with respet to z.The oordinates on the surfae are x1 = ϕ, x2 = z. A point of the surfae is representedby:

X(ϕ, z) = r(z)r̂ + zẑ , (3.30)
r̂ and ẑ being unit vetors.In this parametrization, the mean and Gaussian urvatures are only funtions of z:

H(z) =
1

2
(c1(z) + c2(z)) =

1 + r′2 − rr′′

2r (1 + r′2)3/2
, (3.31)

KG(z) = c1(z)c2(z) = − r′′

r (1 + r′2)2 . (3.32)3.5.1 Equilibrium equations. Axisymmetri ase.If we insert all the previous expressions in (3.18a) and (3.22) we �nd two equations forthe variables r(z) and u(z):
2κ∇2

sH + Λ∇2
su+ 2uδ∇2

sKG + κ(2H +Hs)(2H
2 − 2KG −HHs) − P

− 2λH − 2ΛuKG −BH(u− ao)
2 + ξKab∂au∂bu− ξHgab∂au∂bu = 0 ,

(3.33)
2ΛH+B(u−ao)+2δKGu+ ξr′u′

r (1 + r′2)2+
ξr′3u′

r (1 + r′2)2−
ξr′u′r′′

(1 + r′2)2 +
ξu′′

(1 + r′2)2
+

ξr′2u′′

(1 + r′2)2 = 0 .(3.34)The former equation represents the lassial shape equation modi�ed by the preseneof a salar �eld u(z). The latter is the Euler-Lagrange equation assoiated to thiknessvariation. Replaing in (3.33) the expressions of ∇2, ∇2, Kab and gab in axisymmetrigeometry it is possible to obtain a fourth order equation for the shape variable r, oupledwith u. Note that in the ase u = ao the equation (3.33) beomes the lassial shapeequation.3.5.2 Boundary onditions at the interfae. Axisymmetri ase.As mentioned before, we will onsider the shemati on�guration depited in Fig. 3.5.We assume that the liquid ordered phase is loated in the region 0 ≤ z ≤ −p and willbe labeled with the subsript 1. The liquid disordered domain is loated in the region
−p ≤ z ≤ −D (where we suppose that p,D > 0) and will be labeled by the subsript
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Fig. 3.5: Shemati parametrization of a biphasi vesile. Before the axisymmetri deforma-tion showed here, we have supposed that the initial on�guration was a sphere ofradius Ro. Phases labeled with (1) and (2) orrespond to a liquid ordered domain(Lo) and liquid disordered domain (Ld), respetively.
2. The interfae between them is then loated at the point (zj = −p, rj = q). At thispoint the ar-length variable s, whih is measured with respet to the north pole atdomain 1 (from the origin of the oordinate system O), is given by sj .Using the parametrization, we dedue from Eqn. 3.25 the three following onditions:

r2 |z=−p = r1 |z=−p , (3.35a)
u2 |z=−p = u1 |z=−p , (3.35b)

∂zr2 |z=−p = ∂zr1 |z=−p . (3.35)The two �rst equations represent the ontinuity of both r and u separately. Thelatter is a slope ontinuity equation whih is imposed in order to avoid an in�niteurvature energy, sine the free energy density is proportional to the square of themean urvature H . Then at this "mirosopi" level there is no ontat angle.



58 Chapter 3: Line tension and budding of biphasi vesiles3.5.3 Jump onditions at the interfae. Axisymmetri aseThe jump onditions whih have been previously obtained in a general way must bespeialized to the ase of an axisymmetri biphasi vesile. The ondition (2.66) isidentially satis�ed beause τg = 0 in the axisymmetri ase. The term proportional tothe thikness gradient is also zero and the line tension is a onstant. The onditions(2.67), (2.68), and (2.69) are the only ones that give us relations between the physialparameters at the interfae: The equilibrium of tangential fores in the diretion l maybe expressed as:
κ2

2
[ψ̇(s+ ǫ)] − κ1

2
[ψ̇(s− ǫ)] =

κ2

2

(
sinψ

q
−Hs2

)
− κ1

2

(
sinψ

q
−Hs1

)

+ ∆λ− γ
cosψ

q
+ Λ

sinψ

q
∆u− ξ

2
[u̇1 − u̇2]

+
B

2

[
(u2 − ao2)

2 − (u1 − ao1)
2
]
,

(3.36)
where q (see Fig. 3.5) is the radius of the ontat line. The equilibrium of normal foresis:

κ2ψ̈(s+ ǫ) − κ1ψ̈(s− ǫ) =

[
(2∆κ+ ∆κ)

cosψ

q
+ γ

]
sinψ

q
− cosψ

q
∆Ko

+ Λ(u̇2 − u̇1) +
sinψ

q
δ(u2u̇2 − u1u̇1) ,

(3.37)and �nally the tangential torques:
κ2ψ̇(s+ ǫ) − κ1ψ̇(s− ǫ) = − (∆κ+ ∆κ)

sinψ

q
+ ∆Ko + Λ(u2 − u1) + δ

sinψ

q
(u2

2 − u2
1) .(3.38)This three onditions have been previously obtained in [72℄ in the ase of an ax-isymmetri biphasi vesile. However, in this referene they did not inlude the internaldegrees of freedom. The jump ondition (3.36), (3.37) and (3.38) are thus more general.Note also that in order to ompare these onditions with the onditions obtained in [72℄we have expressed them in the ar-length parametrization (see Fig. 3.5). However inthis hapter our alulation are performed using the height z as relevant urvilinearoordinate.Finally, to omplete the onditions we add the fore related to thikness variations,Eqn. (3.24):

ξ(u̇2 − u̇1) = 0 . (3.39)



3.6. Struture at the joint and boundary layer analysis 593.6 Struture at the joint and boundary layer analysisThe equations (3.33) and (3.34) are di�ult to treat exatly, but we an perform anasymptoti analysis assuming that the narrow region around the interfae between thedomains is omparable with the typial thikness size (≈ 5[nm]). In this setion wewill derive an asymptoti expression for the shape funtion r(z) and for the thikness
u(z) in this region whose extension is very small ompared to the size of the vesile.This region exhibits a boundary layer that is haraterized by a rapid hange inmean and Gaussian urvatures. In addition, away from the narrow part of the jointthese urvatures beome uniform, as the thikness whih takes its equilibrium value uo.At the lowest-order analysis in the outer region we suppose that the shape is given bytwo spherial ups, joined by a narrow nek.The analytial method used in this setion is standard and an be found in [16℄.For instane, it has been used in [41℄ in the ase of a two oexisting �uid phases in(GUV) dominated by surfae tension. They perform a boundary layer analysis in thesmall but non-zero bending sti�ness limit when it is ompared with the surfae tensionbut without thikness variation at the interfae. In another ontext in [17℄ a boundarylayer analysis has been performed in order to derive an analytial expression for theshape of a losed vesile indued by the presene of an inlusion.We introdue now dimensionless parameters neessary for our asymptoti analysis.The width of the joint is given by the interplay between slope orrelations and thespring energy assoiated with the thikness variation. From Eqn. (3.11) the size is oforder lj =

√
ξ/B. For distanes large ompared to lj the width of the bilayer does notvary anymore. We de�ne our small dimensionless parameter as:

ε =
1

Ro

√
ξ

B
, (3.40)where Ro is the radius of the initial spherial vesile. Hereafter we hoose Ro asthe length unit. This hoie gives ε ≃ 10−3 and therefore we an perform a regularperturbation expansion in the small parameter ε.We must ompare the order of magnitude of the physial parameters with respet to

ε. Sine we assume that the joint length sale is of the order of thikness, B = ν/ε2 and
aoi = εai. Moreover, assuming that the mehanial energy Eqn. (3.12) is equivalent tothe hemial one, Eqn. (3.11) gives the saling: Λ = χ/ε.For the sake of simpliity we assume that B1 = B2 ≡ B, ξ1 = ξ2 ≡ ξ, Λ1 = Λ2 ≡ Λ,and we keep κ1 6= κ2, κ1 6= κ2, Hs1 6= Hs2 a1 6= a2, and λ1 6= λ2.3.6.1 Outer layer: Long-sale behaviourBy de�nition the outer layer is the region away from the interfae. Here the membranehas onstant mean urvature Ho . Then we an perform a regular perturbation expan-sion of the variables r(z), u(z), H(z) and K(z) in the small parameter ε. Hereafter all



60 Chapter 3: Line tension and budding of biphasi vesilesthe alulations will be arried out in the (Lo) phase, whih has been denoted with thesubsript 1. For the sake of simpliity it will be suppressed. Generalization to the (Ld)domain is straightforward. We have:
r(z) = r(0)(z) + εr(1)(z) + ε2r(2)(z) + . . . , (3.41a)
u(z) = εu(1)(z) + ε2u(2)(z) + . . . , (3.41b)
H(z) = H(0)(z) + εH(1)(z) + ε2H(2)(z) + . . . , (3.41)
KG(z) = KG(0)(z) + εKG(1)(z) + ε2KG(2)(z) + . . . , (3.41d)

λ = λ(0) + ελ(1) + ε2λ(2) + . . . . (3.41e)Hereafter, the supersript (i) denotes the order of the expansion and the subsriptappearing in funtions or physial parameters (1 and 2) denotes the di�erent domains.At the lowest order the onstraint of onstant urvature is satis�ed by the spherialup solution. The north pole is hosen as the origin of the oordinate systems (z = 0,
r = 0, see Fig. (3.5)). Then we have:

r(0)(z) =

√
R2

1 − (z +R1)
2 , (3.42)

H(0)(z) =
1

R1
, KG(0)(z) =

1

R2
1

, (3.43)at order ε, the mean urvature remains onstant H(1)(z) = Γ1 whih gives an equa-tion for r(1)(z):
−4z2R1

(
3r

′(1) + zr
′′(1)
)

+ z3
(
4r

′(1) + zr
′′(1)
)

+R2
1

(
r(1) + 4z

(
2r

′(1) + zr
′′(1)
))

2R3
1

√
−z (z + 2R1)

= Γ1 ,(3.44)with Γ1 an undetermined onstant. By the hoie of the origin of the oordinatesystem we have −2R1 ≤ z ≤ 0. The previous relation an be solved to obtain:
r(1)(z) =

c1 (z +R1)√
zR1

√
z + 2R1

+
c2

(
−1 + (− log(−z)+log(z+2R1)(z+R1)

2R1

)

√
z
√
z + 2R1

+
zR2

1Γ1√
−z (z + 2R1)

.(3.45)To satisfy the boundary onditions at the north pole r(0) = 0 and r′(0) → ∞, it isneessary to set c1 = 0 and c2 = 0. Finally, the solutions for the shape funtion and forthe thikness at �rst order ε are given by:
r(1)(z) =

zR2
1Γ1√

−z (z + 2R1)
, u(1)(z) =

−2χ+ a1νR1

νR1
. (3.46)The remaining parameters must satisfy some relations at order ε. For the pressure
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Γ1 =

2
(
−ν2λ(1)R4

1

)

ν2R4
1 (R1κ1H2s1 − 4κ1Hs1 − 4a1χ+ 2R1λ(0))

, (3.47a)where Hs1 is the spontaneous urvature of the domain 1, λ(0) and λ(1) are the zeroand �rst order of the surfae tension expansion, de�ned by Eqn. (3.41e).3.6.2 Inner layer: Detailed struture of the interfaeAt the joint we assume that the distane from the symmetry axis is of order one, thatis r = q. It means that we do not onsider the ultimate stages of budding and �ssion,when this distane goes to zero. The �ssion period requires new physial interationsbetween lipids and is not onsidered here. At the joint, both urvatures hange rapidly.We sale variable and oordinates by ε in the following way:
z = −p+ εx , r(z) = q + εζ(x) , u(z) = εη(x) , (3.48)whih gives for the urvatures:

H(z) =
1

ε
h(x) , KG(z) =

1

ε
k(x) , (3.49)Obviously the urvatures are large. Eah new variable admits a regular perturbationexpansion in the small parameter ε given by:

ζ(x) = ζ (0)(x) + εζ (1)(x) + ε2ζ (2)(x) + . . . , (3.50a)
h(x) = h(0)(x) + εh(1)(x) + ε2h(2)(x) + . . . , (3.50b)
k(x) = k(0)(x) + εk(1)(x) + ε2k(2)(x) + . . . , (3.50)
η(x) = η(0)(x) + εη(1)(x) + ε2η(2)(x) + . . . , (3.50d)
ψ(x) = ψ(0)(x) + εψ(1)(x) + ε2ψ(2)(x) + . . . , (3.50e)By de�nition the relation between the resaled mean urvature h and the resaledshape funtion ζ is:

h(0)(x) = − ζ
′′(0)

2 (1 + ζ ′(0)2) 3/2
, (3.51)whih implies Eqn. (3.50e). One the perturbation expansions are introdued inEqn. (3.33) and Eqn. (3.34), we �nd relations whih need to be satis�ed at eah order.At O(ε):

ζ (0)(x) = d1 + b1x , h(0)(x) = 0 , k(0)(x) = 0 . (3.52)At the next order ε we obtain a pair of oupled equations for the variables h(1) et
η(0)

η
′′(0)(x) + l1h

′′(1)(x) + l2η
(0)(x) + l3 = 0 , (3.53a)
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h

′′(1)(x) − loη
′′(0)(x) = 0 , (3.53b)where all the oe�ients lk depend on the physial parameters haraterizing of eahdomain like bending sti�ness modulus and oupling onstants.They also depend on the unknown onstant b1 whih will be obtained by the analysis.The solutions of the previous system are trivial:

η(o)(x) = e−x
√

γ1C5 + ex
√

γ1C6 + xC7 + C8 , (3.54a)
h(1)(x) = e−x

√
γ1C1 + ex

√
γ1C2 + xC3 + C4 , (3.54b)

γ1 =
(b21 + 1) (νκ1 − χ2)

ξκ1
, (3.54)where the onstants {Ci} are integration onstants that we need to determine. Theexpansion of the mean urvature at O(ε) allows us to alulate the resaled shapefuntion ζ (1)(x) at order ε. It reads:

ζ (1)(x) = V1 +W1x+ α1x
2 + β1x

3 − 2 (b21 + 1)
3/2

γ1

(C1e
x
√

γ1 + C2e
−x

√
γ1) , (3.55)where the oe�ients α1 and β1 are given by:

α1 = −
(b21 + 1)

(
2q
√
b21 + 1C4 − 1

)

2q
, (3.56a)

β1 = −1

3
(1 + b21)

3
2C3 = 0 . (3.56b)If we onsider the domain (1), we must hoose: C2 = 0, C3 = 0, C6 = 0 and

C7 = 0 for reasons of onvergene. The mathing between the inner and outer layerswill provide the onstants V1, W1 and C1, but before we treat the seond domain.3.6.3 Inner and outer layer for the domain 2Following the same proedure we dedue the inner and outer layer in the liquid disor-dered domain 2. The outer layer is given by:
r2(z) =

√
R2

2 − (D + z − R2)
2 − ε

(
(D + z)R2

2Γ2√
(−D − z) (D + z − 2R2)

)
+ . . . ,(3.57a)

u2(z) = ε

(−2χ + νa2R2

νR2

)
+ . . . (3.57b)where D is the distane from the origin O of the oordinate system to the southpole of the spherial up solution (see Fig.(3.5)). At order zero the spherial up hasa di�erent radius R2. The onstant Γ2 orresponds to the value of the mean urvature



3.6. Struture at the joint and boundary layer analysis 63at order ε, whih is related to the oe�ients of the surfae tension expansion in thedomain 2 by the following relation:
Γ2 =

−2
(
ν2λ

(1)
2 R4

2

)

ν2R4
2

(
R2κ2H

2s2 − 4κ2Hs2 − 4χa2 + 2R2λ
(0)
2

) . (3.58)The inner layer solution at the order zero in ε is given by the following terms:
ζ

(0)
2 (x) = d2 + b2x , h

(0)
2 (x) = 0 , k

(0)
2 (x) = 0 , (3.59)and at the order ε we have:

h
(1)
2 (x) = ex

√
γ2D2 +D4 , (3.60a)

η
(0)
2 (x) = ex

√
γ2D6 +D8 , (3.60b)

γ2 =
(b22 + 1) (νκ2 − χ2)

ξκ2
, (3.60)here, like in the ase of the domain 1, we have aneled some oe�ients for reasonsof onvergene. Finally at the order ε2 we derive.

ζ
(1)
2 = V2 +W2x+ α2x

2 + β2x
3 − 2 (b22 + 1)

3/2

γ2

D2e
−x

√
γ2 . (3.61)We need also to determinate V2 and W2. So far, all the solutions involve integra-tion onstants that have to be determined. To do this we use the equations obtainedfrom asymptoti mathing of outer and inner solution and the jump onditions at theinterfae and the boundary onditions.As the pressure is homogeneous in eah domain, the mehanial equilibrium imposesthe equality of P1 and P2, whih gives:

−R1κ1H
2s1 + 2κ1Hs1 + 2χa1 − 2R1λ

(0)
1

R2
1

=
−R2κ2H

2s2 + 2κ2Hs2 + 2χa2 − 2R2λ
(0)
2

R2
2

.(3.62)As a onsequene we obtain a relation between λ(0)
1 and λ(0)

2 , i. e. the surfae tensionsat order zero in ε as funtion of the physial parameters.3.6.4 Asymptoti mathing for the boundary layerIn the previous setions we have determined solutions valid in di�erent parts of thesurfae; the boundary layer (the region around the interfae between the domains) andaway from the boundary layer. These solutions must agree in an intermediate region[16℄. Therefore it is useful to �nd their asymptoti behaviour.In the inner region at the interfae, we let x go to → ∞ in domain (1) and x→ −∞



64 Chapter 3: Line tension and budding of biphasi vesilesin domain 2 and we keep only alulations of O(0), O(ε) and O(εx). In the outer layerwe substitute z = −p+ εx in the solutions and we expand the solutions in powers of ε.Finally the orresponding terms resulting at order O(0), O(ε) and O(εx) are balanedafter taking their respetive limits. Note that the mathing of the thikness funtionat orders zero and ε is trivial.The asymptoti mathing of the mean urvature H between both region is immedi-ately satis�ed at order ε−1. At order zero it allows us to derive:
C4 =

1

R1
, D4 =

1

R2
. (3.63)At order ε it gives the following relations:

q1 =
√

−p (p− 2R1) , (3.64a)
q2 =

√
(p−D) (D − p− 2R2) , (3.64b)and �nally at order εx it reads:

d1 = −pR
2
1Γ1

q1
, (3.65a)

d2 = −(D − p)R2
2Γ2

q2
, (3.65b)with p and D the distanes de�ned in Fig.(3.5) and Γi the onstant mean urvaturesat order ε at eah domain.In summary, at this stage we have alulated solutions for the shape funtion, themean urvature and the Gaussian urvature up to order ε and the thikness funtion upto order ε2 in the inner and outer layers for both the (Lo) and (Ld) domains. By meansof an asymptoti mathing analysis we have related some known physial parameterslike p, D, Ri with some of the unknown integration onstants whih appear during thealulation. So far we have not determined all these onstants beause we have notonsidered yet the mehanial equilibrium, whih provides the jump ondition at theinterfae between the domains. In the next setion we will see how the usual jumponditions at the interfae, whih has been established in [72℄ and that are valid foronstant thikness vesiles, are modi�ed by the joint struture.3.6.5 Jump onditions at the interfae up to order εFores and torques ating at the interfae whih have been previously alulated in Se.3.5.3 must be equilibrated at any order. The balane of tangential fore in the diretion

l at order O(1) gives us:
A1 + A2C

2
1 = B1 +B2D

2
2 . (3.66)The oe�ients {Ai, Bi} are ompliated funtions of the physial parameters of the



3.6. Struture at the joint and boundary layer analysis 65problem. At lowest order the tangential fore in the diretion of l an not be alulated,beause it depends on unknown funtions like ζ (2)
i or η(1)

i . There is no ontribution ofthe normal fore at order O(ε−1) and at order one it annot be determined.The balane of the fore assoiated with the thikness variation at order O(ε2) isgiven by:
A3C1 = B3D2 . (3.67)The tangential torque in the diretion of t at order zero reads:
A4 = B4 . (3.68)The balane of the normal omponent of the torque at order zero is:

− 2χ2
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− Hs2κ2
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νR2
1

+
a1χ

R1

− Hs1κ1

R1

+
2κ1

R2
1

+
κ1

R2
1

. (3.69)Note that in this ase the oupling with thikness introdues a modi�ation in theusual expression obtained in [72℄. This hange is due to the terms in χ and ai. As aresult the omponents of the moment tensor in eah domain will be modi�ed. Finallybalaning the moment at order ε we �nd a relation between C1 and D2.
q2
1

√
γ1κ1

R1
C1 = −q

2
2

√
γ2κ2

R2
D2 , (3.70)3.6.6 Boundary onditions at the interfae up to order ε2The boundary onditions disussed in Se. 3.6.1 must be valid at eah order in ε. Atthe order zero we have:

q1 = q2 ≡ q , (3.71)where q is a known parameter (see Fig.(3.5)). The ondition (3.35a) at order εallows us to dedue:
d1 = d2 , (3.72a)
b1 = b2 , (3.72b)At this order neither a ontat angle nor a height mismath exist. Finally at order

ε2:
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2C1R
3
1

γ1q3
= V2 −

2D2R
3
2

γ2q3
, (3.73a)
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χ
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νR2
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2D2κ2

χ
, (3.73b)

2C1R
3
1√

γ1q3
+W1 =

2D2R
3
2√

γ2q3
+W2 . (3.73)



66 Chapter 3: Line tension and budding of biphasi vesilesNow, using (3.73b) and (3.70) it is possible to alulate the integration onstants
C1 and D2 as funtions of all the known physial parameters, whih gives:

C1 =
χq2

2 (R1 (2χ+ ν (a1 − a2)R2) − 2χR2)
√
γ2

2νR2

(
R2

√
γ1q2
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2R1

√
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, (3.74)
D2 =

χ (2χR2 +R1 (ν (a2 − a1)R2 − 2χ))
√
γ1

2νR1

(
R2

√
γ1 +R1

√
γ2

)
κ2

. (3.75)So far we have been able to determine the integration onstants {bi, di} as a funtionof the geometri parameters of the problem, like p, D, Q, Ri (see Fig.(3.5)). This allowsus to express the oe�ients {αi, γi} whih appear in the solutions of the inner region.The rest of the relations are used to �nd the value of the remaining unknown parameters,like Γi, the onstant mean urvatures of eah domain at order ε.
3.7 Contat angle and height mismathWith all the onstants at hand it is possible to determine a ontat angle and a heightmismath if we extrapolate the large-sale solutions up to the interfae C. The heightmismath de�ned as h = V1 − V2 is found using Eqn.(3.73a) and Eqn.(3.73). We notethat h is non-zero at order ε2, thus it is a small parameter.Solving for the height mismath we �nd:

h = −2 (D2R
3
2γ1 − C1R

3
1γ2)

q3γ1γ2

. (3.76)The polar hydrophili heads that omposes the external and the internal surfaesof eah monolayer (±, respetively) must be mathed at the interfae. This thiknessmathing indues a non-zero ontat angle expressed as the di�erene of the slope in theextrapolated large-sale solutions at the interfae. In our notation, this slope di�ereneis θd = W1 − V1. It is given by:
θd =

χ{R1 (2χ+ νa1R2 − νa2R2) − 2χR2} (q5
1R

4
2γ1κ1 − q5
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4
1γ2κ2)

νq3
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3
2R1R2

√
γ1

(
R2

√
γ1q2

1 + q2
2R1

√
γ2

)√
γ2κ1κ2

. (3.77)This angle depends on the values of both mean urvatures at large-sale H(0)
i . Notethat θd is proportional to χ, the saled oupling onstant between thikness and meanurvature. If this onstant is zero there is no ontat angle. It is noteworthy that for

a1 = a2 the ontat angle is not zero, beause urvatures at large sale in the outer layerare onstant and non-zero and therefore C1 6= 0 in this ase. The thikness equilibriumvalue is modi�ed by this onstant. In order to have a zero ontat angle the equilibrium



3.7. Contat angle and height mismath 67thikness uoi must be shifted with respet to ai:
uoi =

−2χ + aiνRi

νRi
. (3.78)Then, if uo1 = uo2 the ontat angle is zero beause C1 = 0 and D2 = 0. If we taketypial values for the membrane parameters (disussed for example in [54℄) we obtain

θd ∼ 15.8 ◦.3.7.1 Energy of the equilibrium on�guration up to order εSo far, we have solutions of the problem at eah order in ε whih are valid in di�erentregions. We need to form a omposite solution, uniformly valid in the entire vesile. Toobtain the omposite solution we use the following relation, explained in [16℄:Composite Solution = Inner solution+ Outer solution−Mathing (3.79)This solution must be replaed in the total free energy (3.8) and its orretionsat eah order of ε must be alulated. Remember that we are able to obtain all theintegration onstants up to order ε for both, the thikness and the shape funtion.Solutions at order ε2 are only known for the thikness variable. Corretions of thefree energy indued by the thikness variations are better understood subtrating theentire omposite solution and the marosopi solution (that is the solution omittingthe thikness ontribution). This omparison at eah order leaves an e�etive termrepresenting a line tension energy. Taking the referene line tension γr = 0 and replaingthe omposite solution in the total free energy up to order ε, it may be expressed inthe following form:
FT = Fo + εγo(θ) , (3.80)where Fo is the total free energy alulated only using the marosopi part of thesolution, and γo is the e�etive line tension:
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√
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√
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, (3.81)whih is �nally expressed as a funtion of the ontat angle:
γo(θ) = A+Bθ + Cθ2 , (3.82)where the oe�ients A, B, and C depend on the physial parameters of the prob-lem:
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C =

νq6
2

√
γ2κ

2
2

4χ2R5
2

. (3.85)Then at order ε the line tension is a paraboli funtion of the ontat angle. Thisbehavior is depited in Fig.(3.6), for typial values used in experiments [14, 15℄ whihhave been also disussed in [54℄.
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Fig. 3.6: E�etive line tension γo as a funtion of the ontat angle θ for typial values: κ2 =
20KBT , κ1 = 5κ2, Hs1 = (50nm)−1, Hs2 = 0.003Hs1, ν = 4×1015Jm−4, a1 = 7nm,
a2 = 5nm, ξ = 10−1Jm−2, χ = 1, 2 × 10−2Jm−23.7.2 DisussionHere we have shown that the short-sale degrees of freedom exited at the interfaebetween domains that ompose a biphasi membrane give rise to a disontinuity inthe membrane slope at the joint. These degrees of freedom have been represented bymeans of an elasti strutural thikness variable. The disontinuity is taken into aountintroduing an e�etive line tension γo, that is a quadrati funtion of this ontat angle.Sine the term Fo in equation (3.80) is given (at eah order in ε) only by the marosopipart of the elasti model we state that the mirosopi thikness mismath oupledto the mean urvature keeps the large sale desription of the bilayer represented bythe usual Helfrih model of elastiity with a modi�ation only at the interfae by ananisotropi line tension energy whih depends on the boundary onditions.A trivial analysis an be performed. Note that the value θ∗ for whih γo(θ

∗) = γminis di�erent from zero. Also, if the angle θ is zero, the value of the line tension γo isdi�erent to zero. When uo1 = uo2 the line tension is proportional to the square of theontat angle, beause A = 0 and B = 0 in this approximation. If we �x the valueof the ontat angle, γo is proportional to the square of the thikness di�erene (the"renormalized" thikness di�erene) beause the integration onstant C1 is proportionalto ∆ = uo1 − uo2.As a onsequene a modi�ation in the boundary onditions is important for the



3.8. Adsorption of impurities and proteins 69struture of the juntion and may be responsible for mehanial instabilities as it hasbeen shown for tubes [6℄ for example.Finally note that the solutions at order ε, given by the funtions ζ (1) and η(0) (seeEqns. (3.54) and (3.55)) have the same analytial struture as those that have beenobtained in [54℄ in the ase of two membrane domains with high spontaneous urvature.This is not surprising sine our analysis of the joint struture is loal. Moreover wehave solved the model that inludes the urvature properties of a losed biphasi vesileand then there is not need to introdue arti�ial boundary fores and torques in thebilayer (beause the vesile is self-sustained and has not boundaries). In this senseour alulation is more general and also allows us to inorporate relevant physialparameters whih have been negleted in [54℄ as Gaussian sti�ness and surfae tension.Therefore, our system is more suitable to be related with experimental situations arriedout in axisymmetri biphasi vesiles [15℄.Another interesting e�et whih has been omitted in [54℄ is the adsorption of diluteimpurities whih normally aumulate in the joint. As we will see in the next setionthey enhane the loal spontaneous urvature of the bilayer and thus the loal ouplingonstant modifying the ontat angle struture and the line tension between domains.3.8 Adsorption of impurities and proteinsAddition of impurities or proteins in vesiles has been widely studied experimentally[124℄, theoretially [4℄ and numerially [10℄ for homogeneous and inhomogeneous vesi-les. For example, in [4℄ the �rst stages of the elasti instability produed by the bud-ding proess in an inhomogeneous vesile are explained using a linear stability analysis.The driving fore of vesile deformation may ome from the adsorption of moleules.However, their analysis refers to a bulk e�et, assuming that impurities are distributedeverywhere on the membrane. Proteins have the preferene to aumulate in regionsof high urvature, like the interfae between domains in separation, in order to relaxsome of the mirosopi distortions.Here we want to study the inlusion of proteins with onentration φ(xa) in the jointregion. We guess that they have a diret in�uene on the line tension, yet modi�ed bythe thikness mathing at the joint, as it has been shown before. Proteins are adsorbedin both phases, but with a di�erent a�nity. They are loalized in the outer surfae(+) and we assume that they do not ross the bilayer, as is more or less established for
PLA2 proteins [124℄.The onial shape of proteins modi�es the geometry of the bilayer and indues aloal urvature in the membrane. This loal distortion an be represented by a densityenergy that ouples the loal onentration and the loal mean urvature [86℄:

fint = Λcφ(x)H(x) , (3.86)where the sign of the oupling oe�ient Λc is given by the shape of the adsorbedproteins. The funtion H(xa) is the mean urvature of the external surfae (whih



70 Chapter 3: Line tension and budding of biphasi vesilesis physially represented by the hydrophili polar heads of the lipid moleules). Thisurvature and the mean urvature of the neutral surfae H(xa) are related by thefollowing expression:
H(x) = H(x) +

1

2
∇2

su+ (2H2 −KG)u+ . . . (3.87)This relation has been alulated up to dominant order in u, φ and H . Replaingthis expression in the oupling free energy term (3.86) we obtain:
fint = f

(i)
4 + f

(i)
5 + f

(i)
6 , (3.88)where eah term depends on the geometri properties of the neutral surfae:
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Λciφi(x)∇2

sui , (3.89a)
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(i)
5 = µiφi +
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2
αi(φi − φoi)

2 +
1

2
βi(∇φi)

2 , (3.89b)
f

(i)
6 = ΛciφiHi , (3.89)where the subsript (i = 1, 2) represents eah domain. The term f

(i)
5 is a Landautype model that represents the energy needed to adsorb proteins on the surfae nearbythe optimal equilibrium onentration φoi. Suh a model has been employed in [4℄.It implies that there is an optimal onentration of proteins in eah phase and anenergeti ost to pay for any hange or inhomogeneity in the repartition measured by

∇aφ. The onstant µi is the hemial potential of the proteins, whih an be interpretedas a Lagrange multiplier �xing the number of moleules in eah phase. This modelassumes that the proteins do not interat hemially with the lipids of the membrane.Consequently, the adsorption proess is a pure physial e�et in our model. The newterms must be added to (3.8) in order to obtain, by means of a variational proess, aset of three oupled equations orresponding to the variations of δX(x), δu(x), δφ(x).They are given respetively by:
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(3.90a)

ξ∇2
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sφ+B(u− aoi) + 2ΛH + 2δuKG = 0 , (3.90b)
−βi∇2

sφ+ µi + αi(φ− φoi) +
1

2
Λci∇2

su+ ΛciH = 0 . (3.90)The three previous equations will allow us to determine if the adsorption of proteinsor another type of impurities (re�eted in the hange of the oupling onstant Λci) is ableto hange the ontat angle (and therefore the e�etive line tension) and �nally to enable



3.8. Adsorption of impurities and proteins 71the instability of domain separation, inreasing the value of γo. Obviously this analysisis very similar to the previous one and therefore we will not repeat all the details. Weagain perform a boundary layer analysis in the narrow region of the interfae. Regularexpansions will be performed using the same parameter ε. It is helpful to sale thephysial parameters assoiated with protein onentration adsorption and we hoose:
µi =

mi

ε
, φoi = εϕi , (3.91)

αi =
ρi

ε2
, Λc1 = χa , Λc2 = χb . (3.92)As before, we write the solutions in the liquid ordered domain (1) and then wegeneralize the solution to domain (2). At large sales, the outer layer solutions for thevariables r(z) and u(z) are the same that have been alulated for the ase withoutimpurities. Here we only give the solution for the onentration φ(z):

φ1(z) = ε

(
ρ1ϕ1 −m1

ρ1

)
+ O(ε2) , (3.93)whih is a onstant at order ε. The inner layer solutions for the shape funtion andthe thikness are again the same as before if the same saling is performed. For theonentration we onsider the saling φ(z) = εΦ(x). At order zero we must solve thefollowing three equations for the variables h(1)
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= 0 . (3.94)After the asymptoti mathing between inner and outer layers we �nd the relationsbetween physial parameters, whih will be used as input parameters, and also theunknown integration onstants. In this way the solutions of the previous equations are:
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, (3.95)where C4 = 1/R1. The jump onditions, imposed at eah order in ε, are almostthe same, exept the stress assoiated to the thikness, whih must be modi�ed by the
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Fu(x) |x=0=
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2
aq

2
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1 + 4ξR2

1ρ1)
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1β1γ1)
C1 . (3.96)There is also a stress related to the variation of the total free energy with respetto the onentration Φ and a torque related to the thikness and oupled with theimpurities onentration. These two terms allow us to establish onsisteny relationsbetween the di�erent physial parameters of eah domain (αi, βi, µi, et).We need to alulate C1 and D2 whih will now depend on βi, ρi, χa and χb. Then,as in the previous analysis, it is possible to derive an expression for the ontat anglebetween membrane domains and also for the thikness mismath θc and hc.On the other hand, we an verify diretly from these expressions that if we takethe limit χa,b → 0 we reover the previous results (3.74) and (3.75). We have a similarsituation for the oe�ients γ1 and γ2 in this limit.We note that we know the solutions of r(z), u(z) and φ(z) up to order ε, in theinner, outer and the entire region, where omposite solutions are valid. The e�et ofprotein onentration at the joint an be analyzed graphially, using the di�erene inthe adsorption a�nity of both domains. This fat is aounted for by onsidering theoupling onstants χa and χb as variables.Replaing the omposite solutions in (3.88) and (3.8) we are able to express thetotal free energy of the equilibrium on�guration as the sum of two terms. Up to order

ε it reads:
FT = Fc + εγc(θ) , (3.97)where Fc is the energy assoiated with the marosopi part of the model (withouttaking into aount the thikness) and γc(θ) is the e�etive line tension measured withrespet to the referene line tension γr = 0, but now modi�ed by the presene ofimpurities. This line tension is a quadrati funtion of the ontat angle θ when theother parameters are �xed.As mentioned before, if the oupling terms χa,b go to zero, then γc goes to γo, thee�etive line tension without the impurities. These saled oe�ients χa,b, whih arerelated to the oupling between onentration and the mean urvature of the neutralsurfae, will be used as ontrol parameters. As the a�nity is di�erent in eah phase,we will onsider the ontat angle and the line tension as funtions of two variables

θc(χa, χb) and γc(χa, χb). The behaviour of these quantities will be analyzed tuning
χa and χb. Analytial expressions for θc and γc are ompliated and for the sake ofsimpliity we perform a graphial analysis.The behavior of the line tension and the ontat angle is depited in Fig(3.7) andFig(3.8), for di�erent values of the oupling onstants χa and χb. It is lear that γcand θc grow when the oupling onstants also grow. Obviously this growing behaviourimplies a growth in the line tension, beause the angular dependene is quadrati. InFig(3.8) we have supposed the ase χa = χb, for simpliity. The value of the parametersare, in this ase, the same as before. For the oe�ients related to the onentration of
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0.0506KBT (µm)4impurities (αi, βi, µi, et) estimated values are given in [4, 5℄. Typial values for theseparameters are χa = 20KBTµm and χb = 1.35KBTµm. It is neessary to emphasizethat in this approah any parameter depends on the hemial potential mi, or onthe equilibrium optimal onentration φoi. The estimation of the oupling oe�ientsgenerally depends on the large sale properties of the membrane whih have already



74 Chapter 3: Line tension and budding of biphasi vesilesbeen inorporated in our desription, as for instane the spontaneous urvature Hsi ofeah domain. 3.9 Summary and disussionIn this hapter we have desribed the energeti and strutural properties in the viinityof the joint between two di�erent domains that ompose an axisymmetri deformedvesile. In order to study these strutural properties we have proposed an elasti modelthat takes into aount the oupling between mirosopi internal degrees of freedomrepresented by the thikness variation at the joint, and the typial marosopi prop-erties of vesiles, like mean and Gaussian urvatures. This model onsiders a loalarea-di�erene elastiity part in the neighborhood of the interfae. As a onsequenea non-homogeneous bending deformation term must be onsidered, that implies at thesame time a thikness gradient varying through the membrane. The model also in-orporates typial marosopi properties of the membrane like spontaneous urvature,surfae tension and Gaussian rigidity. In spite of the omplexity of the equations wesuessfully alulate (by means of asymptoti methods) asymptoti solutions for theshape funtion and the thikness, in the entire region up to order ε.As a diret onsequene we have found a strutural distortion within the joint, thatis re�eted in the mismath of the thikness, that is of order ε. At the same time we�nd a disontinuity in the slope of the membrane shape at the interfae if we onsiderthe desription at the level of Helfrih's theory. This ontat angle has an in�ueneon the marosopi elasti desription of the total energy, produing an e�etive linetension. Using typial values of parameters, the ontat angle varies between 10 and 20degrees, in agreement with a previous result obtained in [54℄, but when the membraneis slightly urved. We have also obtained that the presene of impurities or proteins inthe membrane an modify the ontat angle. As the oupling onstants χa,b inrease,they also inrease the ontat angle and the line tension. If the oupling is estimated by
Λi = KBTR

2
iHsi [4℄, the line tension grows as the spontaneous urvatures also grows.It makes sense, beause the e�et of the proteins is to hange the loal urvature of themembrane, imposing a spontaneous urvature.



Chapter 4GROWTH AND GEOMETRY OF ELASTIC MEMBRANESOF CONSTANT GAUSSIAN CURVATUREIn this hapter we study the geometri and elasti properties of growing thin stru-tures whih are desribed by surfaes of onstant Gaussian urvature. At �rst, wepresent a method to produe this kind of growing surfaes. A geometrial free en-ergy, for whih these surfaes are equilibrium states, is introdued and interpretedas an ation. An equilibrium surfae an then be generated by the evolution of alosed spae urve. Beause of the loal symmetries of the ation, the evolution isobtained using Dira's method for onstrained Hamiltonian system. This formula-tion leads to four �rst order partial di�erential equations, one for eah anonialvariable. With the appropriate hoie of parametrization only one of these equa-tions has to be solved to obtain the surfae whih is swept out by the evolving spaeurve. Finally, we illustrate the formalism by performing some evolutions fromdi�erent initial onditions. Aordingly, surfaes of onstant Gaussian urvaturewithout any speial symmetries an be easily produed. In partiular we fous ontwo examples that are relevant to desribe the shape adopted by growing soft tissuesourring in nature: i) the disturbane of the growth proess of a pseudosphere andits energeti properties, and ii) the growth of a surfae with uspidal singularities,in whih the strething energy is onentrated.4.1 IntrodutionAs mentioned in Se. 1.2, in the ase of soft thin tissues, growth proesses indue residualstresses even in the absene of external loads. These residual stresses are able to hangethe geometrial struture of the tissue and an, for instane, indue a shape instabilityin the growing material [63℄. The resulting shape is given by the minimization of anelasti surfae energy whih onsists of two terms, one due to bending and one due tostrething whih have been desribed theoretially in Se. 2.4Growth at this level an be interpreted as a proess whih �xes the distane betweentwo points on the surfae. This implies the existene of a target metri [50, 74, 96℄,and therefore (by the Theorema Egregium of Gauss) a presribed Gaussian urvature
KG of the �nal surfae. In general the real surfae annot adjust to the target metriin all of its points and has to streth. However, if the thin tissue is able to assume its
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(a) An Angel's Trumpet(Brugmansia). (b) A da�odil. () A morning gloryFig. 4.1: Examples of soft tissues with nonvanishing Gaussian urvature. The �owers of type(a) and () exhibit a pentagonal symmetry.target on�guration, the orret shape an be found by minimizing the bending energyof the orresponding surfae with presribed metri and Gaussian urvature. Findingsurfaes with a ertain Gaussian urvature is thus one important and neessary step tounderstand suh growth problems.In this hapter we study surfaes with onstant Gaussian urvature (.G..s.). Inpartiular, surfaes with zero Gaussian urvature are alled developable surfaes. Theyhave been largely disussed in the ontext of stresses in thin elasti sheets [8, 34, 42, 66,100, 140℄. In general, however, growth generates surfaes with �xed non-zero Gaussianurvature. Typial examples are �owers [96℄, plant leafs [43, 95, 103℄, or plasti sheetswhere the inrease of area is indued arti�ially by tearing [11, 119℄. But not onlygrowth proesses an generate these surfaes. Reently, it has been shown that nematimembranes an bukle into pseudospheres beause of defets in their internal degreeof freedom [57℄. A pseudosphere is an axisymmetri surfae with Gaussian urvature
KG = −1. Aordingly, surfaes of onstant negative Gaussian urvature are also alledpseudospherial surfaes. On the ontrary, when this urvature is positive the surfaeis alled a spherial surfae.Both types of surfae have been onsidered from a mathematial point of view inorder to study the onnetion between di�erential geometry and partial di�erentialequations. It is, for instane, well-known that ertain types of solutions of solitoniequations like the sine-Gordon or the Korteweg-de Vries equation are assoiated with.G..s. [113, 114, 46℄. Here, using some of these properties we will onsider spherialand pseudospherial surfaes in order to model the geometri and elasti behaviour ofthin growing tissues. Our �rst step is to onsider a theoretial formalism that will allowus to express the growth proess as the evolution of a losed urve in the spae. Thisis the aim of the next setion.



4.2. Hamiltonian formulation of surfaes with onstant Gaussian urvature 774.2 Hamiltonian formulation of surfaes with onstantGaussian urvatureThe main purpose of this setion is to present a formalism that will allow us to generatesurfaes with onstant Gaussian urvature (.G..s.) from the evolution of a losed urve
C. In this sense we will say that the law of motion satis�ed by the urve orrespondsto a geometrial evolution.The desription of a urve in R

3 is given by the Frenet-Serret equations. Thisstruture has been onsidered in order to study the integrability properties of ertaintypes of geometrial evolutions [102℄. The geometrial evolution is usually expressed byan appropriate law of motion where the veloity Ẋ of the urve is given as a funtionof its geometrial properties suh as its urvature κc or its torsion τc. Equations of thistype allow to desribe di�erent physial problems [113℄. In our ase the law for theevolution is expressed in terms of the aeleration of the urve and not in terms of itsveloity. This is due to the fat that the urve is onstrained onto a surfae of onstantGaussian urvature, as we will see.The approah that we will use here has also been used in the ase of �uid membranes[26, 29℄. The theoretial bakground has its origin in general relativity where it wasproposed that the spaetime manifold M an be interpreted as the trajetory of anextended objet (or brane) B embedded in a �at bakground spaetime V [25℄ using theADM deomposition [9℄. In our ase, the manifold M is a two-dimensional surfae Σ,the extended objet is a urve C on the surfae, and the host spae is the standard three-dimensional Eulidean spae E
3. In addition, as the temporal variable is Eulidean, theADM deomposition is the standard orthogonal deomposition of linear algebra.For our purpose the dynamis of the urve is determined by a geometrial ationthat �xes the Gaussian urvature of Σ. However, as a onsequene of this geometrialstruture the ation involves seond derivatives, whih implies that the phase spae hasto be extended: the veloity of the urve and its respetive onjugate momentum haveto be inluded as anonial variables. Furthermore, we will see that the Lagrangianfuntion is reparametrization invariant and linear in the aeleration of the urve. Thisimplies that the system is onstrained in the phase spae. In order to overome bothdi�ulties we will use Dira's method whih deals with onstrained Hamiltonian sys-tems in a systemati way [93℄. In the following setion we will determine a geometrifree energy whose minimization produes surfaes of onstant Gaussian urvature.4.2.1 A Free Energy desribing a .G..s.As seen in Chapter 2, to obtain the shape of a two-dimensional elasti objet, oneusually minimizes an elasti free energy whih depends on the geometrial properties ofthe material. For instane, a �uid lipid membrane an be modeled as a two-dimensionalisotropi ontinuum that does not resist in-plane shear. In general this �uid is assumedto be inompressible. The free energy funtional FM of a losed membrane Σ whose



78 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvaturearea and volume remain onstant during its deformation an be expressed as:
FM[X] = FCH[X] + Fσ[X] + FV[X] , (4.1)where eah term has been explained in Chap. 2. If we suppose that the surfaetension is a onstant λ, the total free energy of the losed vesile an be reast as:

FM[X] =
κ

2

∫

Σ

dA K2 + κ̄

∫

Σ

dA KG +B

∫

Σ

dA K + λ

∫

Σ

dA− P

∫

V

dV . (4.2)The two �rst terms in Eqn. (4.2) orrespond to the Willmore funtional [139℄. Thematerial parameters κ and κ̄ are the bending rigidity and the saddle-splay modulus,respetively. Note that the seond term in (4.2) an be dropped sine it is an invariantfor a losed surfae and thus does not ontribute to the determination of the equilibriumon�guration (see App. A).The free energy Eqn. (4.2) allows us to interpret the variation of FM[X] as theminimization of the Willmore funtional subjet to three global onstraints that areimposed by onstant Lagrange multipliers: λ is the surfae tension whih �xes the area,
P is the pressure di�erene between interior and exterior that has to be maintainedto keep the enlosed volume V onstant. Finally we have de�ned B as a Lagrangemultiplier �xing the total mean urvature. Note that it an be expressed as B = −κKoin the notation of Chap 2.To determine the equilibrium shape of the surfae, the response of the free energy toin�nitesimal variations of the embedding funtion X → X + δX has to be onsidered.We know that it has the following struture (see Eqn. (2.22) in Chap. 2):

δFM[X] =

∫

Σ

dA EM(H)(N · δX) +

∫

Σ

dA ∇aQ
aM . (4.3)Note that in this ase we have supposed that the losed membrane is homogeneous,and therefore the tangential part AaM of the bulk term in Eqn. (4.3) is identially zero,as mentioned in Chap. 2. The seond term of this variation is a surfae integral over adivergene and an thus be reast as a boundary integral. It originates from tangentialvariations as well as from derivatives of the normal variation and is related to thee�etive stresses in the surfae. The bulk part of the variation is a surfae integral overthe Euler-Lagrange derivative EM times the normal projetion of the surfae variation

δX. Its vanishing determines the equilibrium shape of the interfae. Hene, EM = 0 isalso alled the shape equation whih for a lipid membrane reads [24, 142℄:
−κ
[
∇2K +

K

2
(K2 − 4KG)

]
+ 2BKG + σK − P = 0 . (4.4)The goal of this hapter is to study surfaes of onstant Gaussian urvature. Alose observation of Eqn. (4.4) reveals how to onstrut a geometrial funtional whihdesribes a .G..s.: it is su�ient to inlude the third and the �fth term of the free
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Fig. 4.2: Generation of .G..s. Σ by a moving urve C. The orthonormal vetor basis {t, l,N}is the Darboux frame of the urve on the surfae. The geometrial properties of Σan be deomposed in the tangent basis {X ′, Ẋ} adapted to the evolution of theurve.energy Eqn. (4.2) in the new funtional:
FG[X] :=

∫

Σ

dA HG = B

∫

Σ

dA K − P

3

∫

Σ

dA (N · X) , (4.5)where B and P are onstants and the integral over the volume is rewritten as asurfae integral. The resulting shape equation is:
KG =

P

2B
, (4.6)whih indeed �xes the Gaussian urvature of the surfae loally. Note that the lastterm in Eqn. (4.5) is the volume term FV that has been rewritten as a surfae term, asdesribed in Se. 2.3.1. In this ase the orresponding boundary integral in (4.3) doesnot vanish in general sine the surfaes that we will to onsider here are not losed [65℄.It is important to stress that FG is not a free energy obtained from elastiity theorylike the free energy FM of the �uid membrane. Its equilibrium states (i.e., surfaes ofonstant Gaussian urvature) an nevertheless be found in analogy to the ase of a �uidmembrane using a Hamiltonian formulation [29℄. Even though the two ases are loselyrelated, the Hamiltonian formulation of the membrane an only be partially translatedto .G..s. as we will see in the following setions.



80 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvature4.2.2 Projeting the surfaeA .G..s. will be generated by the evolution of a losed urve C that is parametrizedby u (see Fig. 4.2). If we parametrize its evolution in time by t, the resulting surfae Σwill be given by X(u, t). Sine the urve stays always on the surfae, the expressionsfor the tangential vetor X ′ = ∂X/∂u = ∂uX and the veloity Ẋ = ∂X/∂t = ∂tXare given by:
X ′ =

√
h t , Ẋ = αX ′ + β l , (4.7)where t is the unit tangent vetor of the urve at �xed time t, l is the unit vetornormal to the urve and tangential to the surfae, and h = X ′ · X ′ is the metri ofthe urve (see again Fig. 4.2). The funtions α and β an be written in terms of thederivatives of the urve:

α = h−1(Ẋ · X ′) , β2 = Ẋ2 − h−1(Ẋ · X ′)2 . (4.8)The geometrial properties of the surfae Σ an be deomposed along a surfae basisadapted to the urve, as in the ase of the ontat line variation in Chapter 2 (see alsoApp. A.2). If we take e1 = X ′ and e2 = Ẋ as the tangent vetors of the surfae, themetri adopts the following form:
gab := ea · eb =

(
h αh
αh α2h+ β2

)
, where a, b ∈ {1, 2} . (4.9)The determinant of this indued metri follows diretly: g = β2h. The normalvetor of Σ is given by the ross produt of the tangent vetors t and l: N = t × l =

e1 × e2/(β
√
h). The extrinsi urvature tensor Kab an also be deomposed along e1and e2. One obtains:

Kab := −N · ∂aeb = −
(

N · X ′′ N · Ẋ ′

N · Ẋ ′ N · Ẍ

)
. (4.10)Note that the urvature tensor depends on the aeleration of the urve projetedalong the normal diretion. The urvature K and the Gaussian urvature KG arethe invariants of the mixed extrinsi urvature tensor Kb

a = Kacg
cb. As usual, repeatedindies (one up and one down) imply a summation. In this deomposition the invariantsare given by

K =
1

β2
(−N · Ẍ + JK), (4.11a)

KG =
1

g
[(N · Ẍ)(N · X ′′) − JG] , (4.11b)



4.2. Hamiltonian formulation of surfaes with onstant Gaussian urvature 81where the funtions JK and JG do not depend on the aeleration Ẍ of the urve:
JK = 2α(N · Ẋ ′) − h−1(Ẋ)2(N · X ′′) , (4.12a)
JG = (N · Ẋ ′)2 . (4.12b)Using this deomposition in the next setion we will identify the Lagrangian stru-ture of the free energy Eqn. (4.5) and the phase spae variables related to it in orderto determine the dynamis of the urve C.4.2.3 Identi�ation of the phase spae variablesThe onventional shape equation involves the metri gab and the extrinsi urvaturetensor Kab. Using a Hamiltonian formulation the shape equation an be rewritten interms of the evolving urve X(u, t). This alternative struture o�ers a true advantageif one wants to �nd equilibrium solutions numerially, or if one wants to follow theevolution of the edge of a growing tissue.To identify the appropriate phase spae variables of this formulation, we express thefree energy Eqn. (4.5) as an ation funtional that ontains the dynamis of X(u, t) intime:

FG[X] =

∫ dt L[X, Ẋ, Ẍ] , L[X, Ẋ, Ẍ] =

∮ du L[X, Ẋ, Ẍ,X ′,X ′′, Ẋ ′] ,(4.13)where L is the Lagrangian of the system and L is the Lagrangian density funtionalgiven by:
L = β

√
h

[
B

β2

(
−N · Ẍ + JK)− P

3
N · X

]
. (4.14)This Lagrangian density depends impliitly on the embedding funtion X and thenormal vetor N . It is of seond order in time derivatives of X. Sine L is linearin the aeleration Ẍ, one ould perform an integration by parts within the ation toeliminate this dependene. Instead we will use the method for onstrained Hamiltoniansystems to proeed [93℄. The strategy in this setion follows diretly along the linesof the �uid membrane ase [29℄. Di�erenes will only beome apparent later when theonstraints on the system are investigated.As a diret onsequene of the aeleration dependene the phase spae ontains notonly the position of the urve X(u, t) and its onjugate momentum p(u, t), but alsothe veloity of the urve Ẋ(u, t) and its onjugate momentum Π(u, t). The momentaare de�ned by the funtional derivatives:

Π :=
δL

δẌ
, (4.15)

p :=
δL

δẊ
− ∂t

(
δL

δẌ

)
. (4.16)



82 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvatureThe anonial momentum onjugate to the veloity an be immediately obtainedfrom Eqn. (4.14):
Π = −B

√
h

β
N . (4.17)One an show that the other anonial momentum p is related to the onservedstress of the surfae Σ [29℄. Sine (4.5) does not represent the physial elasti freeenergy of a .G..s. but is merely a geometrial funtional, this stress does not havea physial meaning like in the ase of a lipid membrane. We will nevertheless use thesame terminology to make the onnetion with previous work [29℄.For a Lagrangian whih depends on the aeleration like (4.13), the �rst variationan be written as:

δFG[X] =

∫

Σ

dA EG(N · δX) +

∮

C
du (p · δX + Π · δẊ

)
. (4.18)In the ase of a .G..s. the Euler-Lagrange derivative is given by E = 2BKG − P .On the other hand, the �rst variation is also given by equation (4.3):

δFG[X] =

∫

Σ

dA EG(H)(N · δX) +

∮

C
du √

h laQ
aG , (4.19)where the divergene term was rewritten as a boundary integral using Stokes theo-rem. The quantities la are the omponents of the vetor l = laea in the surfae basis(see Fig. 4.2). The urrent QaG depends on the stress-like surfae tensor f a in the form[64℄:

QaG = −f a · δX −
(
δHG
δKab

)
N · δeb , (4.20)whereHG is the free energy density of (4.5). In general the tensor f a has omponentstangential and normal to the surfae. In the present ase it is given by:

f a =

[
B(Kab −Kgab) +

P

3
gab(N · X)

]
eb −

P

3
gab(X · eb)N . (4.21)The divergene of this tensor an be used to write the shape equation (4.6) in thefollowing form:

∇af
a =

1

3
PN . (4.22)Comparing the two versions (4.18) and (4.19) of the variation one an identifythe terms proportional to δX and obtain the following expression for the anonialmomentum onjugate to the position:

p = −
√
h laf

a + ∂u(αΠ) , (4.23)
= B

√
h
(
Kgab −Kab

)
laeb −

P

3
(X × X ′) + ∂u(αΠ) . (4.24)



4.2. Hamiltonian formulation of surfaes with onstant Gaussian urvature 83Note that the term proportional to P in the free energy introdues a normal om-ponent in the vetor f a. We antiipate that it will also ause a soure term in theHamilton equation for the anonial momentum p. Also note that we have used analternative way to alulate p. The usual way is to use the de�nition Eqn. (4.16) whihimplies alulating the funtional derivatives of the Lagrangian funtion L.Both p and Π transform as a density under reparametrizations of the surfae. Byusing the ompleteness of the metri and the surfae tangent vetors gab = tatb + lalb,one an demonstrate that the anonial momentum p is independent of the aelerationof the urve. Its expression as a funtion of the anonial variables is:
p = Bh−1/2β−1

[
(N · Ẋ ′)X ′ − (N · X ′′)Ẋ

]
− P

3
(X × X ′) + ∂u(αΠ) . (4.25)Both anonial momenta are only funtions of X, Ẋ, and their spatial derivatives,i.e., the phase spae variables are not all independent at a �xed time t. As a onsequenethere are onstraints on the system that have to be inorporated in the Hamiltonianformulation of the problem.4.2.4 The onstrained HamiltonianAs usual, we perform the Legendre transformation of the Lagrangian (4.13) with respetto the veloity Ẋ and the aeleration Ẍ:

H[X,p; Ẋ,Π] :=

∮ du H =

∮ du (Π · Ẍ + p · Ẋ) − L[X, Ẋ , Ẍ] , (4.26)and obtain the anonial Hamiltonian density of the system:
H =

[
p · Ẋ −

√
h

β
BJK +

P

3
β
√
h(N · X)

]
. (4.27)Note that the dependene on Π is automatially eliminated. This is due to thefat that the Lagrangian is linear in the aeleration Ẍ and implies that the resultingHamilton's equations are inonsistent. FollowingDira's method [93℄, one an, however,overome this obstale by imposing the relation (4.17) involving Π as a onstraint onthe system. The projetions along the basis {X ′, Ẋ,N} yield a set of so-alled primaryonstraints:

C1 = Π · X ′ ≈ 0 , (4.28a)
C2 = Π · Ẋ ≈ 0 , (4.28b)
C3 = Π · N +B

√
hβ−1 ≈ 0 . (4.28)The weak equality symbol ≈ means that the quantities Ci are zero on shell (i.e.,when the equations of motion are satis�ed) but do not identially vanish throughout



84 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvaturethe whole phase spae. A quantity Q in phase spae is thus weakly equal to a quantity
W if they are only di�erent by a linear ombination of the onstraints.The total Hamiltonian an be obtained by generalizing the anonial Hamiltonianto:

HT = H +

∮ du (λ1C1 + λ2C2 + λ3C3) , (4.29)where the λi are Lagrange multiplier funtions of the oordinates u and t enforingthe onstraints (4.28). For the formalism to be onsistent we require that the onser-vation in time of the primary onstraints vanishes:
Si := ∂tCi = {Ci, HT} ≈ 0 , (4.30)where the Poisson braket {·, ·} is given by:

{Q,W} =

∮ du [( δQ
δX

· δW
δp

+
δQ

δẊ
· δW
δΠ

)
−
(
δW

δX
· δQ
δp

+
δW

δẊ
· δQ
δΠ

)] (4.31)for two phase spae quantities Q and W . The temporal derivative of eah Ci,given in Eqn. (4.30), de�nes the seondary onstraints of the system. These seondaryonstraints are the generators of gauge invarianes of the system. They are expressedby:
S1 = p · X ′ + Π · Ẋ ′ ≈ 0 , (4.32a)
S2 = −H = −p · Ẋ +

√
h

β
BJK − P

3
β
√
h(N · X) ≈ 0 , (4.32b)

S3 = −p · N +
P

3

√
h(l · X) + ∂u(αΠ) · N ≈ 0 . (4.32)The seondary onstraints (4.32a) and (4.32b) re�et the reparametrization invari-ane of the initial free energy FG: the onstraint S1 generates the reparametrizationstangential to the urve C whereas S2 generates reparametrizations out of the urve. Thelatter is equivalent to the vanishing of the anonial Hamiltonian density, as one wouldexpet. With the two onstraints the tangential part of the momentum p is determinedompletely. The seondary onstraint S3 additionally �xes its normal omponent.At this point it is instrutive to onsider the equivalent formulation for the �uidmembrane again [29℄. The struture of the �rst two primary and seondary onstraints

C1, C2, S1, and S2 is the same in both ases sine the free energy funtional (4.2) of the�uid membrane, FM[X], is reparametrization invariant as well. The onstraints C3 and
S3, however, are harateristi for a system with a Lagrangian linear in the aeleration.Another example where this ours an be found in [30℄. They do not enter in the aseof the membrane sine FM[X] is nonlinear in the aeleration Ẍ.In fat, for a .G..s. both momenta are �xed ompletely by the onstraints. Theindependent degrees of freedom are the position X and the veloity Ẋ. The equa-tions that �nally determine the evolution of the urve and therefore the surfae will be



4.2. Hamiltonian formulation of surfaes with onstant Gaussian urvature 85two �rst order equations, a trivial one for the position and another one for the velo-ity. These equations are determined by the Hamiltonian (4.29) and its orrespondingHamilton's equations. 4.2.5 Hamilton's equationsIn this setion we obtain the equation of motions for the four phase spae variables.From the onstrained Hamiltonian (4.29) the following set of Hamilton's equations isobtained:
∂tX =

δHT
δp

, ∂tẊ =
δHT
δΠ

, ∂tΠ = −δHT
δẊ

, ∂tp = −δHT
δX

. (4.33)The �rst equation of (4.33) allows us to identify the anonial variable Ẋ (i.e., theveloity of the urve) with the time derivative of the variable X:
∂tX = Ẋ . (4.34)Sine the Hamiltonian (4.29) depends on Π only in the terms involving the on-straints, the seond equation is given by:

∂tẊ = λ1X
′ + λ2Ẋ + λ3N . (4.35)This is the prinipal equation whih desribes the evolution of the urve. It identi�esthe Lagrange multipliers; they are equivalent to the three omponents of the aeleration

Ẍ of the urve in the basis {X ′, Ẋ,N}. The third equation in (4.33) is:
∂tΠ = −d − λ2Π + λ3

√
hβ−2Bl + λ3β

−1(Π · l)N , (4.36)where d := δH/δẊ is a ompliate expression that just depends on the anonialvariables. It is possible to show that Eqn. (4.36) oinides with the expression (4.23) ofthe anonial momentum p. Modulo the other Hamilton equations, the fourth equationan be identi�ed with the vetorial form (4.22) of the shape equation (4.6), whih inthis ase is expressed in terms of the anonial variables of the problem:
∂tp = −

√
hβ
P

3
N + ∂u

{
m + ∂u[h

−1(Ẋ)2
Π] + λ1Π + λ3S

}
. (4.37)The interested reader an �nd the equivalene between Eqn. (4.37) and the vetorialform Eqn. (4.22) of the shape equation (4.6) in Ref. [130℄ together with the de�nitionsof the vetors d, m and S.Note that Eqn. (4.37) has the form of a ontinuity equation with a soure term givenby the expliit presene of the position vetor X in the Hamiltonian.Equation (4.35) and the de�nition of the Gaussian urvature (4.11b) allow us to writethe third Lagrange multiplier λ3 as a funtion of X ′, Ẋ, and their spatial derivatives
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X ′′ and Ẋ ′. We obtain:

λ3 = (N · X ′′)−1
[
(N · Ẋ ′)2 + gKG] , (4.38)where KG = P/2B is given by the shape equation (4.6). The two other Lagrangemultipliers λ1 and λ2 are the tangential omponents of the aeleration Ẍ . Usingequation (4.35) and the expressions from setion 4.2.2 one �nds:

λ1 = h−1
(
Ẍ · X ′ − αhλ2

)
, (4.39)

λ2 = β−2
[
(Ẍ · Ẋ) − α(Ẍ · X ′)

]
. (4.40)The projetions of the aeleration onto the surfae basis vetors {X ′, Ẋ} an beexpressed in terms of derivatives of the omponents of the metri tensor (4.9):

A1 := Ẍ · X ′ = ∂t(αh) −
1

2
∂u(Ẋ

2) = ġ12 −
1

2
g′22 , and (4.41)

A2 := Ẍ · Ẋ =
1

2
∂t(Ẋ

2) =
1

2
ġ22 , (4.42)yielding an alternative expression for eah of the two multipliers

λ1 = g1aAa =
1

g

[
g22

(
ġ12 −

1

2
g′22

)
− 1

2
g12 ġ22

]
, and (4.43)

λ2 = g2aAa =
1

g

[
−g12

(
ġ12 −

1

2
g′22

)
+

1

2
g11 ġ22

]
. (4.44)These multipliers represent the gauge part of the evolution. Choosing values forthem orresponds to �xing the parametrization of the surfae. Note that this hoiesolely determines how the urve evolves. The underlying .G..s., however, is alreadyompletely determined by the initial onditions. We will disuss this point in detail inthe following setion in the ontext of pseudospherial surfaes.For example, if we hoose an ar length parametrization for the oordinate linesof the surfae (i.e., all urves of t = st. and u = st.), the omponents of the metriread g11 = g22 = 1 and g12 = cos θ, where θ(u, t) is the angle between the veloity Ẋand the tangent X ′ of the urve C. From equations (4.43) and (4.44) one then obtains

λ1 = −θ̇ csc θ and λ2 = θ̇ cot θ for the Lagrange multiplier funtions.Sine λ1 and λ2 are ompletely arbitrary they an also be hosen to vanish. In thisase the equation that needs to be solved simpli�es to:
∂ttX = λ3N , (4.45)with λ3 given by equation (4.38). Note that this is a nonlinear partial di�erentialequation for X of seond order in spae and in time written in the form ∂ttX =
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Fig. 4.3: The pseudosphere. The blak urves represent the evolving irular urve at di�erenttimes t (ti = 0.2, tf = 2.2, ∆t = 0.4). The blue urves show a di�erent evolutionon the same surfae with hanged initial veloity (Vt = 0.03, ti = 0.1, tf = 9.9,
∆t = 2.45).

F [X ′, Ẋ, Ẋ ′,X ′′].The formulation disussed so far is partiularly useful to determine .G..s. numer-ially. The initial ondition for equation (4.34) is a losed urve in spae X(u, ti) atinitial time ti. This implies that the embedding funtion and its �rst and seond spatialderivatives are funtions periodi in u. Additionally, the initial veloity of the urve
Ẋ(u, ti) has to be spei�ed as the initial ondition for equation (4.35). The anonialmomenta follow diretly from the primary and seondary onstraints (4.28) and (4.32).The Lagrange multipliers λ1 and λ2 an be hosen arbitrarily �xing the parametrizationof the urve. If they are set to zero, the tangential projetions A1 and A2 of Ẍ vanish.From equation (4.42) it follows diretly that the length of Ẋ is preserved in time fora �xed u. To ensure, for example, that the parameter t is equivalent to ar length,it is thus su�ient to hoose |Ẋ(u, ti)| = 1. Finally, if we now let the urve C evolveaording to Hamilton's equations, a .G..s. will be generated. However, the ontinu-ous evolution of the urve is not ensured at all and singularities may arise during themotion as we will see in the next setion.4.2.6 Singularities in the evolutionTo illustrate our �ndings, we will spei�ally onsider surfaes of negative Gaussianurvature KG = −1. A simple axisymmetri example is the pseudosphere (see Fig. 4.3).It is the surfae of revolution of the so-alled tratrix around its asymptote [113℄. Dueto the symmetry we hoose to parametrize the surfae in polar oordinates X(u, t) =
(x(u, t), y(u, t), z(u, t))T = (R(t) cos(u), R(t) sin(u), Z(t))T. An analytial expression



88 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvaturefor R(t) and Z(t) is given by:
R(t) = seh(t) , (4.46a)
Z(t) = t− tanh(t) . (4.46b)The same parametrization an be used for the generating urve if we start with aplanar irle of radius R(ti) at height Z(ti) and veloity omponents VR(ti) and VZ(ti),where

VR(t) = −seh(t) tanh(t) , and (4.47a)
VZ(t) = tanh2(t) (4.47b)are obtained diretly from equations (4.46). In this deomposition the metri isgiven by

g11 = seh2(t) , g12 = 0 , and g22 = tanh2(t) . (4.48)Note that both parameters, u and t, do not diretly measure the ar length of theoordinate lines. From equations (4.17) and (4.25) one easily obtains the omponentsof the onjugate momenta:
ΠR(t) = −B seh(t) , ΠZ(t) = −2B sh(2t) , (4.49)and

pR(t) = −B
3
seh(t)

[
2t+ tanh(t)

]
, pZ(t) =

B

3

[
3 − seh2(t)

]
. (4.50)Finally, the Lagrange multiplier funtions of this parametrization are given by thefollowing expressions:

λ1(t) = 0 , λ2(t) = seh(t)sh(t) , and λ3(t) = seh(t) tanh(t) . (4.51)One immediately sees that the aeleration of the evolving urve is not purely normalbut has an additional tangential omponent in the diretion of Ẋ. The blak urvesin Fig. 4.3 show one example of an evolution with initial time ti = 0.2 and �nal time
tf = 2.2. For tf → ∞ the evolving irle onverges to a point at in�nity. If ti is hosennegative, however, the evolution will always terminate at t = 0 sine the veloity (4.47)of the urve goes to zero. This behaviour is due to a singularity of the surfae, theirular usp, where the urvature K diverges.In fat, pseudospherial surfaes will always exhibit singularities sine the hyperboliplane annot be immersed ompletely into E

3 [69℄. Typially, these singularities areuspidal edges that an exhibit usps themselves (so-alled swallowtail points). As soonas the urve reahes a surfae singularity in at least one point, the evolution terminates.To illustrate this behaviour, we perturb the initial planar irle weakly into an ellipse
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Fig. 4.4: Pseudospherial surfae generated by the evolution of an ellipse. Blak urves rep-resent this evolution in time (time step ∆t = 1.05). The numerial values for theinitial onditions are: a0 = 1.1, b0 = 1.4, V0
R = −0.3, and V0

Z = 0.1. Initial and �naltime are given by ti = 0 and tf = 6.3, respetively.parametrized by:
X(u, ti) = (a0 cos(u), b0 sin(u), 0)T , (4.52)where a0 and b0 are onstant and positive. Moreover, we start with an axisymmetriinitial veloity given in the form:

Ẋ(u, ti) =
(
V0

R cos(u),V0
R sin(u),V0

Z

)T
. (4.53)Sine no analytial solution is known, Hamilton's equations (4.33) have to be solvednumerially. To simplify the numerial integration, the Lagrange multipliers λ1 and λ2are hosen to vanish. In Fig. 4.4 we show one example of a surfae produed by theevolution of the urve with the initial onditions (4.52) and (4.53). For inreasing tthe ellipse deforms and seems to turn by 90◦. At tf = 6.3 the evolution stops beausethe urve reahes a uspidal edge of the underlying surfae. This is not evident fromthe �gure but an be observed diretly by looking at the urvature K of the surfaewhih diverges in four points on the urve. At what point(s) the urve reahes thesurfae singularity �rst, depends on the hoie of λ1, λ2, and the initial onditions. Forinstane, if we had taken other values for the Lagrange multiplier funtions λ1 and λ2,the same initial onditions would have generated a di�erent part of the same surfaesine the urve would have reahed other points of the uspidal singularity �rst.The evolution an also terminate beause the urve itself develops a singularity.This e�et an be observed by looking at the pseudosphere again (see blue urves in�gure 4.3). We keep the planar irle as initial urve but take a veloity whih has avarying tangential omponent proportional to X ′(u, ti):

Ẋ(u, ti) =
(
VR(ti) cos(u) − Vt sin2(u), VR(ti) sin(u) + Vt cos(u) sin(u), VZ(ti))T ,(4.54)



90 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvaturewhere VR(ti) and VZ(ti) are given by equations (4.47). Furthermore, we set λ1 and
λ2 to zero again. The generated surfae is still the pseudosphere. However, duringthe ourse of the evolution the initially planar urve begins to deform and develops asingularity in its geodesi urvature even though the underlying pseudosphere is smooth(see �gure 4.3 again).The initial veloity must thus be arefully tuned to avoid these kinds of problem:
Ẋ(u, ti) should be hosen perpendiular to the initial urve in every point. After a smalltime step ∆t the urrent urve an then be used as new initial urve with an adaptedinitial veloity to ensure that the evolution stays perpendiular to the urve at all times.The same result an be obtained more easily if one sets λ1 = −g12/

√
g11g22. This addsa tangential omponent to Ẍ opposing an eventual tilt of the veloity vetor out of thediretion perpendiular to the urve. With this hoie of λ1 even the evolution with theinitial veloity (4.54) will not develop the singularity shown in �gure 4.3. The urvestays nearly planar instead and sweeps out the whole upper domain of the pseudosphere.In the next setion we will use the evolution equation (4.45) that desribes .G..s.to alulate the elasti properties determining the shape patterns and the preferredstrutures appearing in a growing thin material. In partiular, we ompare our �ndingswith harateristi shapes observed in slender objets in nature.4.3 Example 1: The pseudosphere and isometri embeddingsHaving established a model for growing surfaes we an apply this formalism to biolog-ial samples like �owers ommonly observed in nature. We will onsider that growthimposes the Gaussian urvature of the surfae, the evolving urve is the edge and wewill �x the initial onditions in suh a way to reover the observed shapes in nature.As mentioned in Chap. 1, an alternative formulation of growth has been used in[42, 43℄ to study the evolution of a thin elasti dis. The proess was deomposed intoa growth step and an elasti relaxation step leading to an equilibrium on�gurationthat ontained residual stress. For deformations that are large ompared to the thik-ness of the sheet (but not too large) it was proved that growth imposed the Gaussianurvature. This urvature has to vanish almost everywhere in the ase of a thin elastidis submitted to a entral anisotropi homogeneous growth. The equilibrium shapeswere found among the subset of surfaes with KG = 0 by minimization of the bendingenergy [42, 100℄.As was stated, whereas the Gaussian urvature is zero in this speial ase, otherobjets obey di�erent growth laws whih make KG nonvanishing. To get a handle onthese proesses as well, we will treat the problem of a growing sheet that evolves from airular urve keeping KG onstant at all times t. Small perturbations from the initialonditions will show whether the state is a loal energy minimum.The resulting surfaes resemble the shape of di�erent �owers (see Fig. 4.1) eventhough the atual biologial proesses are muh more ompliated. Correspondinggeometries are in fat ubiquitous in nature; pseudospherial surfaes (i. e., KG < 0)



4.3. Example 1: The pseudosphere and isometri embeddings 91an, for instane, be found in objets ranging from lettue leaves [119℄ to various kindsof sea reatures suh as sea slugs, �at worms, and nudibranhs. However, these surfaeswill in general have singularities if strething is not allowed.4.3.1 Evolving the urve and elasti energyWe model the growth of the tissue as the motion of a losed urve Xt(u), u ∈ [0, 2π[,whih sweeps out a surfae of onstant Gaussian urvature KG with inreasing time
t ∈ [0, tf]. Its evolution is desribed by Eqn. (4.45) whih an be rewritten as:

Ẍ = (N · X ′′)−1
[
(N · Ẋ ′)2 − g(u, t)KG]N , (4.55)Dashes denote derivatives with respet to u and dots derivatives with respet to t.The metri determinant is then given by g(u, t) = Ẋ2X ′2 − (Ẋ · X ′)2.At t = 0 the urve has some initial veloity v0(u) := Ẋ0(u). The evolution (4.55)preserves the length of Ẋ in time for a �xed u. To ensure that the parameter t isequivalent to the ar-length, it is thus su�ient to hoose |v0| = 1.As long as the onstraint on the Gaussian urvature an be ful�lled in every point,no strething will our in the bulk of the surfae and therefore the bending energy:

FW[X] =

∫ du dt√g(κK2

2
+ κ̄KG) , (4.56)is the only energy ontribution. In this expression κ and κ̄ denote the bending rigid-ity and the saddle-splay modulus, respetively, whereas K is the trae of the extrinsiurvature tensor, as we stated before. Thus, the question of determining strething-freeon�gurations orresponds to the problem of �nding isometri embeddings of hyperbolispaes into E

3. Then, this geometry must minimize the Willmore funtional (4.56).At t = tf the urve is a free edge and a boundary layer will exist that has to ensurethat the boundary onditions of fore and torque balane are ful�lled. In general this isnot possible without strething. To estimate the width ∆t of this layer, the strethingenergy thus has to be taken into aount. The shape of the boundary layer is thendetermined balaning strething and bending terms in this region. For non-Eulideanelasti plates the size of this boundary layer has been obtained in [49℄. It sales withthe square root of the plate thikness h, suh as in the ase of the width of an elastiridge produed on a spherial shell whih is subjet to a puntual deformation [108℄.4.3.2 AxisymmetryFor simpliity we onsider an axisymmetri situation �rst and we assume that theurve is a planar irle of radius ρ0 with an initial veloity parallel to the z diretion.In this ase Xt(u) = {ρ(t) cosu, ρ(t) sinu, z(t)}T and the evolution an be determinedanalytially. Sine t measures ar-length, the ondition 1 = ż2 + ρ̇2 holds.



92 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvatureThe prinipal urvatures of an axisymmetri surfae are given by K⊥ = −∂ρż and
K‖ = −ż/ρ. Their produt is equal to the Gaussian urvature, KG = ∂ρ(ż

2)/(2ρ). Sinewe want KG to be onstant throughout the growth proess, it an be easily integratedyielding:
ρ̇2 +KG(ρ2 − ρ2

0) = 0 . (4.57)This equation is solved by ρ(t) = ρ0 cos (
√
KGt). Consequently we have:

z(t) =
E

q√
KGt,KGρ2

0

y
√
KG , (4.58)where E Js, kK denotes the ellipti integral of the seond kind [1℄. In the follow-ing all lengths and urvatures will be saled with √|KG|, i. e., t̃ := t

√
|KG|, K̃⊥ :=

K⊥/
√
|KG|, et.If the Gaussian urvature vanishes, the sheet is a simple ylinder. For KG 6= 0singularities will our at a �nite time t̃s.For onstant positive Gaussian urvature the urve will ontrat to a point at t̃s =

π/2. In suh a ase a soft tissue an only inrease its irumferene if axisymmetry isrelaxed: in analogy to a growing �ower one an, for instane, divide the surfae intopiees by veins where eah piee has a onstant positive KG itself (see Se. 4.4).Surfaes of negative Gaussian urvature will always exhibit singularities sine thehyperboli plane annot be immersed ompletely into R
3 [69℄. Typially, these sin-gularities are uspidal edges that themselves an exhibit usps (so-alled swallowtailpoints). The axisymmetri surfae has a irular usp at ρ̃s := ρ̃(t̃s) =

√
1 + ρ̃2

0 where
t̃s = arcsinh (1/ρ̃0). At that time K̃‖ = −

√
(ρ̃2s/ρ̃2) − 1 vanishes and K̃⊥ diverges; thesurfae onverges towards the horizontal plane.If the growth proess stops at a time t̃f before the singularity is reahed, the bendingenergy F̃W := FW/(πκ) of the pseudospherial surfae is given by:

F̃W = − (4 + 2m) ρ̃0 sinh t̃f + ρ̃2s [arctan
(
sinh t̃f)
ρ̃0

+ arctanh
(
ρ̃0 sinh t̃f)] , (4.59)where m := κ̄/κ is the ratio between the two elasti moduli assoiated with bending.For a thin plate it is of the order of −1 sine it is given by ν − 1 where ν is Poisson'sratio [83℄. Note that for small t̃f the energy depends linearly on time (see Fig. 4.5):

F̃W ≈ [(1 − ρ̃2
0)

2 − 2ρ̃2
0m ]t̃f

ρ̃0

= ρ̃0[(K̃|t̃=0)
2 − 2m ]t̃f . (4.60)Its minimum in this regime is thus found at ρ̃min0 = [

√
(m+ 1)2 + 3 − (m+ 1)]−1/2.In the following we assume that the tissue is inompressible whih implies that ν =

−m = 1/2 and ρ̃min0 ≈ 0.88.Close to the singularity the bending energy of the surfae diverges. The real tissuewill respond by relinquishing axisymmetry and the onstraint on the Gaussian urva-



4.3. Example 1: The pseudosphere and isometri embeddings 93

t̃f

B̃

0.1

0.5

0.05

1

5

10

0.1 0.5 1 2Fig. 4.5: Bending energy F̃W for m = −1/2 and ρ̃0 = 0.1 (solid line), 0.5 (dashed-dotted),0.88 (bold solid), 1.29 (long-dashed), and 2.27 (short-dashed). Inset: axisymmetripseudospherial surfae with ρ̃0 = 0.1.ture. Strething will then play a role as well, even before the singularity is reahed.4.3.3 Disturbane of the growth proessImagine now that the initial onditions of the growth proess are disturbed weakly dueto external in�uenes. For the system to stay axisymmetri the only possible hange in
v0 is a onstant tilt in the radial diretion. In this ase the right-hand side of Eqn. (4.57)is equal to cos2 α where α is the tilt angle measured from the horizontal (x, y) plane.The linearity of the bending energy for small t̃f implies that it will inrease for ρ̃0 < ρ̃min0and derease for ρ̃0 > ρ̃min0 if α is dereased slightly below α = π/2.If axisymmetry is relaxed, other senarios are possible: the initial veloity an, forinstane, have an additional omponent in the azimuthal diretion whih hanges with ualong the urve X0(u). In this ase the swept out pseudospherial surfae is axisymmet-ri as well sine the indued perturbation amounts just to a surfae reparametrization.The evolving urve, however, will in general not stay planar any more. Moreover, sin-gularities due to the parametrization an our before the singularity of the surfae isreahed, as we have seen in Se. 4.2.6.If we allow small deformations from the irle, the evolution of the urve has to bedetermined by solving Eqn. (4.55) numerially. The new initial urve an be expandedinto n modes Xn

0 (u, ǫ) = ρn
0 (ǫ)[1 + ǫ cos (nu)]{cosu, sin u, 0}T. We keep the total ar-length of this urve �xed to L̃0 = 2πρ̃0 whih implies that ρ̃n

0 (ǫ) = ρ̃0/[1+(1+n2)ǫ2/2].Sine the urvature of the urve has to be positive for all u to satisfy the onstrainton KG, there is a maximum ǫnmax whih dereases with inreasing n. To avoid further



94 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvatureompliations, we onsider a vertial initial veloity v0 of unit length for all u. Thebending energy an be alulated numerially and ompared to the axisymmetri ase.One �nds that it inreases like ǫ2 for a �xed n and t̃f. Consequently, the system willtry to stay axisymmetri during its growth.In the following setion we will study the deformations produed by a growingproess on spherial surfaes. In this ase strething beomes important, onentratingin linear regions on the surfae.4.4 Example 2: A spherial surfae and the strething energyNow we treat the ase of a growing tissue with positive Gaussian urvature. Spherialand developable surfaes exhibit a ommon feature in reponse to deformations: theappearane of loalized strutures in whih strething energy is onentrated [8, 133℄.In the ase of spherial surfaes they are organized in intriate patterns, whih transitbetween multiple metastable states [76, 107, 110, 133℄. In this example we will use theseonepts to determine the preferred shapes of an initially deformed spherial surfaethat grows. To ahieve this in the next setion we introdue the geometri and elastiproperties of ridges.4.4.1 Ridges in non-Eulidean slender struturesA ridge is a region of the surfae Σ in whih bending and strething terms are of thesame order. As stated, the same situation is observed in a boundary layer ourring innon-Eulidean elasti plates. We will suppose here that a regular elasti surfae Σ anbe deformed due to its growth proess.Ridges have been studied with the help of external loads ating loally on the surfae.This lassial problem has been adressed in [83, 108℄. In this ase a semi-spherial shell isdeformed by a point-like normal fore ating in its north pole. If the fore is su�ientlylarge, a ap inversion is produed in this region. This ap minimizes the elasti energy ofthe on�guration, sine this struture preserves distanes between points on Σ. In otherwords, the on�guration is isometri to the spherial one and therefore the strethingenergy involved is almost zero [12℄. We denote Σn the surfae produed by an isometritransformation of the original surfae. Note that in the ase of a growth proess theoriginal surfae is not neessarily known. However, as we will see, this is not important.The surfae Σn is not neessarily a regular on�guration.We denote Σr the �nal (and real) deformed surfae. By means of a simple energetiargument we state that the �nal surfae is very lose to the isometri surfae, withviolation of regularity in ertain lines Cn. The neighborhood of these lines onformthe ridge, where the elasti energy is onentrated. The shell is not isometri in theneighborhood to Cn. This zone is denoted Cr and orresponds to the real shape.As mentioned in Chap. 2, the elasti energy of an elasti slender body is omposed bytwo terms. An elasti bending term aounting for the out-plane deformations whih



4.4. Example 2: A spherial surfae and the strething energy 95is minimized by plane geometries, and a strething term, representing the in-planedeformations of the body whih is minimized by isometries of the referene surfae(using the geometri properties of this surfae, like the metri tensor or its Gaussianurvature).A growing surfae may be desribed by an elasti free energy of this type, wheregrowth ats as a soure of mean and Gaussian urvatures in a typial model of Föppl-von Kármán type [42℄. In the previous setions we have stated that growth proess anbe understood as the motion of a losed urve that swept out a surfae with presribedGaussian urvature. As a onsequene of the growing proess, ridges are produed toavoid singularities in the bending energy. The �nal surfae has a disrete symmetrywith respet to its enter. This symmetry will be related to the number of surfaesomposing Σn. We will determine whih is the preferred symmetry that minimizes theelasti energy. 4.4.2 Construting a pieewise .G..s.Growth proesses in nature do not neessarily produe an axisymmetri �nal shape, asin the ase of the pseudosphere. Typial examples are ertain varieties of �owers andplants that present a disrete symmetry with respet to its enter (see Fig. 4.1). In thease of �owers, this symmetry may be assoiated with a paking problem of the initialon�guration that produes the �nal tissue [105℄. Consequently, the �nal surfaes isomposed by n idential piees onneted to eah other through n elasti ridges. Sinethese ridges onentrate the stress, nature an hose to relax these stresses by veins,an idea suggested by Y. Couder. This idea rests on the analogy between veins in livingtissues and fratures in di�erent materials, like gel �lms [40℄.The initial ondition for the growth proess is a urve omposed by n irular arswith the same radius of urvature ρn
0 (see Fig 4.6(a)). Heneforth the supersript nindiates the dependeny on the number of surfae piees.We are interested in desribing the elasti properties of a pieewise surfae of on-stant and positive Gaussian urvature. From now on it is denoted as KG to distinguishit from the pseudospherial ase. At the joint between the piees, this onstraint willbe relaxed and the strething ontribution will appear in order to avoid singularities.Eah piee is onstruted by utting out an axisymmetri surfae Σs, of Gaussianurvature KG, with two planes Pα, whih make a �xed angle α = 2π/n to eah other(see Fig. 4.6(b)). The surfae Σs is then produed by the evolution of an initial irularurve C0

s of radius ρn
0 that orresponds to the maximal equatorial irle, at ti = 0.At �xed t > ti, irles on the spherial surfaes are smaller and smaller (seeFig. 4.6(b) again). The intersetion between the planes Pα and the surfae Σs is aurve on Σs that an be identi�ed with the ridge. Note that for a ertain t = Tf(n),due to our geometrial onstrution, the surfae leaves the vein and we will assume thatthe growth is stopped at this point.However, the number n of ridges that minimizes the elasti free energy must beseleted at a muh earlier time t = Tm(n). A parametrization of the axisymmetrial
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(a) (b) ()Fig. 4.6: (a) Construting the initial urve C0
n with n = 5. (b) Constrution of Σn using aplane Pα and a spherial surfae (positive and onstant Gaussian urvature) Σs. ()Final surfae with n = 5.surfaes Σs is given by Xs(θ, t) = {ρ(t) cos(θ), ρ(t) sin(θ), z(t)}T , and we have:
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n
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z
, (4.61b)where E Js, kK denotes the ellipti integral of the seond kind [1℄.Finally the surfae Σn is onstruted by means of the union of n idential piees ofsurfae (see Fig. 4.6() for the ase n = 5).This surfae is not regular on the ridges, sine the normal vetor is not well-de�ned.

Σn an be interpreted as a surfae that grows at the same time than Σs, but its initialondition is a di�erent urve. Note that if the plane Pα is tangent to the initial urve
C0

s there will be no evolution and then we annot de�ne a surfae.Now we assume that the initial urve C0
n determining Σn has an initial length Ln

0 .There are n points on this urve desribing the n starting points of the veins. Thesepoints also de�ne a irle of radius Rn
0 , entered in the z -axis of Σn. Using Eulideangeometry one an show that the system has to satisfy the two following equations:
Ln

0 = 2nδn
0 ρ

n
0 , (4.62a)

Rn
0 sin γ(n) = ρn

0 sin δn
0 , (4.62b)where δn

0 is the angle sustained by ρn
0 , and γ(n) = π/n.In order to ompare the energy of surfaes with di�erent values of n we need to �xsome quantities at the initial time. We need to establish a seletion proess whih restson the variational property of elastiity. For this purpose we onsider surfaes withdi�erent values of n, but with spei� initial onditions.



4.4. Example 2: A spherial surfae and the strething energy 97Heneforth we assume that the initial length of the urve Ln
0 and the initial radiusof urvature ρn

0 are independent of n. In this way we an determine the initial angle δn
0and the initial radius Rn

0 . De�ning ǫ = L0/2πρ0 we �nally have:
δn
0 (ǫ) = ǫ

(π
n

)
, (4.63)
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n

)
sin
(πǫ
n

)
. (4.64)As mentioned, there is a maximal value for δn

0 in whih ase there is no intersetionbetween the plane Pα and the spherial surfae Σs. We denote this maximal value as
δn
m = π/2−γ(n). The maximal angle implies that the possible values of ǫ are restrited:

0 < ǫ < 0.5.The free energy an be minimized as a funtion of n or as a funtion of ǫ. Thatmeans, for eah �xed value n the elasti free energy minimization must be performedfor di�erent values of ǫ.Using this onstrution eah piee of Σn is parametrized as:
Xn(u, t) = {r(u, t) cos(r), r(u, t) sin(u), z(t)}T , (4.65a)
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(4.65b)and the oordinate z is given by:
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z
, (4.66)where 0 6 u 6 π/n and 0 6 u 6 Tm. Note that in this parametrization, thepieewise surfae is symmetri with respet to the x-axis. In order to alulate theradius r(u, t) it is neessary to take into aount the distane l(ǫ, n) between the z-axisof the surfaes Σs and Σn. It is a onstant in time, but it depends of n and ǫ. Finallythe total surfae an be obtained if we hange u → (mod{nu + π, 2π} − π)/n in thefuntion r(u, t) and 0 6 u 6 2π, as an be seen in Fig.4.6().By means of this onstrution the values of R(t), ρ(t), δ(t), and Tm an be easilyobtained as funtion of the known parameters. The maximal possible time is given by:

Tm(ǫ, n) =
γ(n)(n− 2(ǫ+ 1))

2
√
KG

, (4.67)and it is possible to determine that, for ertain �xed value of ǫ we have; Tm(ǫ, 3) <
Tm(ǫ, 4) < . . . when n inreases. Then, in order to ompare the di�erent symmetrieswe take Tm(ǫ, 3) as the �nal time of growth. It is evident that the minimal ase of



98 Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvatureinterest is n = 3. It is noteworthy that is not possible to hoose any initial onditionsthat allow us to get an initial urve with the minimal symmetry. For example, if weonsider Rn
0 and Ln

0 as independent parameters we annot satisfy simultaneously theinitial onstraint δn
0 < δn

m for all the values of n.We are interested in desribing the geometry and the elastiity of a real deformedsurfae Σr having a disrete symmetry with respet to its enter. This surfae representsthe mean surfae of an homogeneous and isotropi elasti shell (or plate) whih has aonstant thikness h. In addition it is not neessarily Eulidean. This �nal shape isprodued by the elasti deformation originated by the growth proess.We will also assume that the �nal shape is, in a sense, geometrially in�exibleand therefore its geometry is lose to the geometry of Σn. It an be supposed thatthis virtual surfae omes from an isometri deformation of a ertain initial unknownsurfaes [108℄. In Σn, violation of regularity is present for ertain lines Ci, where bendingenergy beomes in�nite. Consequently, after the elasti relaxation, an elasti ridge ofa given size ω ours in the neighborhood of these lines. Elasti strething energy isonentrated here.The pieewise surfae Σn parametrized by (4.65b) is not regular on the ridges. Inorder to regularize the surfae we will suppose that there exist veins of a given size r0at eah ridge. The n veins add an additional term to the total elasti energy sine thesurfae wraps a part of eah vein. Consequently the surfae takes the form of the veinin this region.In this ase, the size of the ridge is known and the two prinipal radii of urvaturean be estimated. The small one is approximately r0 and the larger is given by thegrowth of the tissue in the diretion of time. Note that the regularization of the surfaeviolates the restrition of onstant positive Gaussian urvature, and thus strething willour in this region.In order to onsider the shape of the ridge, we suppose that at eah �xed time asmall irle of radius r0 is tangent to two piees of Σn. As the angle φ between thetwo piees in the ridge beomes smaller when time inreases and the surfae grows, theenter of the small irle moves on the line with onstant angle uf = π/n. This distane
d(t) is a funtion of t. Note that the distane ω between the two tangent points at eahpiee is not onstant in time. By means of simple geometrial relations we obtain someproperties of the ridges as funtion of the original angle:
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 ,(4.68)In our parametrization eah piee of the surfae is isometri to a surfae of onstantGaussian urvature, exept in a region given by a ritial angle Uc(t), whih orrespondsto the angle sustained by r(u, t) at the tangent point between the small irle of radius
r0 and the isometri piee of surfae. Then, the ridge is onstrained at the intervals
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Uc(t) 6 u 6 γ(n), and 0 6 t 6 Tm(ǫ, 3), where we have:
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θ =
r0 sin

(
π(ǫ+1)

n

)

(
ρ0 cos

(
t
√
KG

)
+ r0

)(
cot
(

π
n

)
sin
(

π(ǫ+1)
n

)
− cos

(
t
√
KG

)√
1 − ρ2

0 sin2(π(ǫ+1)
n )

(ρ0 cos(t
√
KG)+r0)2

) .(4.70)Using this, we establish a parametrization for the ridge. It is given by:
Xr(u, t) = {rr(u, t) cos(r), rr(u, t) sin(u), z(t)}T (4.71)where the radius rr(u, t) is a solution of the quadrati equation:

rr(u, t)
2 − 2rr(u, t)d(t) cos(γ(n) − u) + d(t)2 − r2

0 = 0, (4.72)and the funtion z(t) is given by the equation (4.61b). Then, using this onstrution,a pieewise surfae an be obtained joining the n idential piees and ridges. Theparametrization of the �nal surfae is splitted in two parts. The �rst one is an isometripart and the seond one is the parametrization of the ridge. Note that the Gaussianurvature of the ridge is not onstant. An elasti energy assoiated with strethingdeformations must thus be alulated with respet to the isometri surfae at the ridge.In the next setion we will speify how the elasti free energy minimization seletsertain symmetries.4.4.3 Elasti energy of the total pieewise surfaeOne the mathematial desription of Σn has been established, we alulate its totalelasti energy. This elasti energy must be omposed by the strething and bendingterms. In order to ompare the di�erent on�gurations we will suppose that the surfae,whih is produed by a growth proess, is an homogeneous and isotropi nonlinearelasti shell. A typial elasti theory of shells has been proposed by Koiter in 1966[75℄. A modern and formal interpretation of this theory an be found in [39℄ wherethe theory is formulated using the elements of three and two-dimensional di�erentialgeometry. The elasti theories of shells and plates are usually obtained by a dimensionalredution of the well established three-dimensional theory of �nite hyperelastiity whihwas developed in the �rst years of the nineteenth entury by Cauhy and Poisson. Usingthe fat that the thin dimension is muh smaller than the other dimensions and also thestandard Kirhho�-Love assumption (see for example [92℄) the elasti energy is writtenas a surfae integral in terms of the middle surfae of the shell. Another prinipalassumption is that the referene on�guration is a natural state, i.e, there are not



100Chapter 4: Growth and geometry of elasti membranes of onstant Gaussian urvaturemehanial stresses when the shell adopt this on�guration.Nevertheless, we know that slender elasti bodies having the ability to grow (suhas plant leaves and �owers) exhibit residual stresses, and therefore in absene of ex-ternal fores their natural geometry is not neessarily Eulidean. Several e�orts havebeen made in order to inorporate this onstrition in a oherent bi-dimensional elas-ti theory. In [43℄ the growth proess is onsidered as a "plasti" deformation thathanges the body from the natural unstressed on�guration to some virtual one. Thisvirtual on�guration �nally relaxes to a urrent on�guration by means of an elastiproesses. All this struture an be mathematially taken into aount using a multi-pliative deomposition of the deformation gradient elasti tensor. In this way, whenthe dimensionality of the elasti material is redued and the deformations are not toolarge, the equations that desribe the equilibrium of the plate are of Föppl-von Kármántype where growth is a soure of both mean and Gaussian urvatures.Another approah has been developed in [50℄. They do not onsider deformationswhih are not of elasti nature and therefore virtual on�gurations are supposed to beknown. In this ase the referene state is not onstrained to be Eulidean and onse-quently residual stresses are allowed. The dimensional redution from three dimensionaltheory is performed using the same assumption as in the ase of Koiter's shell theory.As a result they obtain that the elasti energy of the slender body is a surfae integralof the two dimensional middle surfae desribing this body. In this surfae, strethingand bending terms are writing as funtions of the geometrial properties of the surfae,suh as the metri and the urvature tensor. Furthermore, the referene metri is notneessarily immersible in three dimensional spae and there is not a referene on�g-uration in whih stresses vanish. Their model is a Koiter's type model in whih thetarget urvature tensor Kab is set to zero.As in the Föppl-von Kármán theory, the bending term is proportional to h3 and thestrething term is proportional to h, where h is the thikness of the thin elasti shell:
E(K, g) = h

∫

S

ΩS(g)dS + h3

∫

S

ΩB(K)dS , (4.73)where S is referene surfae, dS =
√
Gdξ1dξ2 is the in�nitesimal surfae element, Gis the determinant of the referene metri Gab, and the strething and bending densitiesare expressed as:

ΩS =
1

8
Aabcd(gab −Gab)(gcd −Gcd), (4.74)

ΩB =
1

24
Aabcdkabkcd, (4.75)where kab is the urvature tensor of the urrent �nal surfae and the elastiity tensor

Aabcd is dedued supposing that the hyperelasti material is homogeneous and isotropi,
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Aabcd =

Y

2(1 + ν)

(
2ν

1 − ν
GabGcd +GacGbd +GadGbc

)
, (4.76)where Y , ν are the Young's modulus and the Poisson ratio respetively.In our ase, the surfae Σn an be onsidered as a stressed referene on�gurationfrom whih the �nal surfae is obtained by elasti relaxation. Using the symmetry ofthe problem, the elasti energy an be alulated in two parts. In the �rst part, theurrent deformed on�guration is an isometry of the referene metri gab = Gab, andthe bending elasti energy is redued to the Willmore funtional, as stated before. Itsenergy density is given by:

ΩW (u, t) =
h3K(u, t)2

24(1 − ν2)
− h3KG(u, t)

12(1 + ν)
, (4.77)where K is the mean urvature of the surfae and KG its Gaussian urvature. This�rst part of the elasti energy is alulated in the region 0 6 u 6 Uc(t) and 0 6 t 6

Tm(3). Then the metri Gab is given by the parametrization of the piee of surfae(4.65b) in the entire limit 0 6 u 6 γ(n) and 0 6 t 6 Tm(3). If G denotes thedeterminant of this metri and using the obvious symmetry of the problem the isometrielasti energy of the pieewise surfae is:
Eiso(n) =

∫ Tm(3)

0

∫ Uc(t)

0

2n
√
G(n)ΩW (u, t;n)dudt . (4.78)Almost all the funtions depend on L0, ρ0, KG and r0. The seond part of the totalelasti energy is onentrated at the ridges. The referene metri is the same as in the�rst part, but the urrent �nal surfae is approximated by the surfae imposed by thevein on Σr. The strething term is present to avoid singularities in the bending. Wewill use (4.73) to alulate the elasti energy. This time, the urrent metri gab is givenby the parametrization (4.65b). The region of integration is given by Uc(t) 6 u 6 γ(n)and 0 6 t 6 Tm(3). The �nal expression is:
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∫ Tm(3)

0

∫ γ(n)

Uc(t)

2n
√
G(n)ΩR(u, t;n)dudt , (4.79)where the term ΩR is the sum of strething and bending density energies evaluatedin the ridge parametrization:

ΩR(u, t;n) = hΩS(u, t;n) + h3ΩB(u, t;n) . (4.80)The total elasti energy is the sum of (4.78) and (4.79). We �nd the value of n suhthat the total elasti energy is minimized. The energy is numerially alulated varyingn and the others parameters. Some results are showed in the Figure (4.7).We an see that the elasti energy reahes its minimum value when n = 5 and for
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(a)Fig. 4.7: Elasti energy of a pieewise surfae as a funtion of n. The values of the parametersare: r0 = 0.02ρ0, ν = 0.5, KG = 1, L0 = 1.5ρ0, ρ0 = 1. Eah urve representsdi�erent thikness values: h1 = 0.012, h2 = 0.027, h3 = 0.032, h4 = 0.037, h5 = 0.042and h6 = 0.052. When the thikness is of the order of the ridge width (ω ≈ 0.04), theenergy is minimized by n = 5 (yellow (3), green (4) and blue (5) urves, respetively).All length values are dimensionlessvalues of thikness that are omparable to the width of the ridge. When the thiknessdereases, the minimum moves to n = 6, 7 . . ., (see Fig. 4.7 again)The minimum is not very deep and this indiates a possible dispersion whih anprobably be orreted onsidering an additional elasti term in the total elasti energy.However, our results are onsistent with the symmetries presented in [105℄ where it ismentioned why most of the �owers have �ve or six petals.It is important to note that in this approximation we have not onsidered the elas-tiity of the vein. This may be inluded assuming that a single vein is well desribedas an elasti rod. In suh a ase, Kirhho�'s theory of rods is the most appropriatemathematial framework to deal with the vein elastiity. However this inreases thenumber of parameters that must be onsidered in our approah, suh as the elastibending rigidity of the vein. Then, we will not onsidered this assumption here.4.5 Summary and disussionIn this Chapter we have presented a Hamiltonian formulation for the onstrution ofonstant Gaussian urvature surfaes. In the approah the geometry of the surfae isreonstruted from the evolution of a losed urve in three-dimensional Eulidean spae.This evolution is determined by an appropriate geometrial energy funtional whih isinterpreted as an ation. The �nal equation that has to be solved is of seond order inthe position vetor. The formalism is general and allows to desribe surfaes without anysymmetry. It is partiularly useful if one wants to onstrut these surfaes numerially.To this end the initial onditions and the tangential omponents of the aeleration have



4.5. Summary and disussion 103to be properly adjusted to avoid singularities in the evolving urve. Surfaes of negativeonstant Gaussian urvature additionally exhibit singularities themselves whih ausethe evolution to stop. Tuning the onditions to �nd a whole uspidal edge of the surfaerequires further studies but is straightforward.The approah an, for example, be applied to a growing thin sheet where growthimposes the Gaussian urvature on the surfae. As long as the sheet is able to assumeits target on�guration no strething will our. The orret shape of the surfae ata ertain time t an then be found by minimizing the bending energy in the subset ofsurfaes that obey the initial onditions. Singularities that our during the evolutionimply that the target on�guration annot be immersed ompletely into E
3 any more.A ombination of strething and bending will then have to aommodate the onstraintsimposed by growth and elastiity. The presented formulation paves the way to treatsuh physial problems sine it o�ers one tratable method to determine isometriimmersions of the surfae numerially.We have foused on two examples that are relevant to desribe the shape adoptedby growing soft tissues in nature. First, we have shown that the pseudosphere is the ax-isymmetri surfae having the minimal bending energy with respet to its perturbationsduring the growth proess. The perturbed bending energy grows with the square of ǫ,the perturbation parameter. Determining surfaes with the same metri (and thereforethe same Gaussian urvature) orresponds to �nding isometri immersions in E

3. Butthis problem is mathematially possible only for ompat surfaes (whih is our asewhen the perturbation takes plae). Consequently, the strething energy must not beonsidered and the energeti ontributions are only due to bending. A pseudosphereresembles the shape of a Da�odil as is depited in Fig. 4.1(b). However, the end ofthis �ower is haraterized by nie ondulations (see Fig. 4.1(b)). One may think toperform a boundary layer in whih strething energy beomes important, giving thewavy behavior.As a seond example we have treated surfaes having singularities at the beginningof the growth proess. These singularities an be interpreted as ridges in the elastitheory of shells, or as veins for the ase of soft tissues. In this ase, a growing sur-fae with onstant Gaussian urvature has been onstruted and its symmetries havebeen analyzed with respet to its energy minimization. We �nd that for values of thethikness ompare with the size of the veins, the elasti energy is minimized by surfaeshaving n = 5 idential piees. This behaviour is displayed by natural growing tissues,like �owers. Brugmansia and the Morning Glory, whih are depited in Fig. 4.1(a)and in Fig. 4.1() respetively, show this pentagonal symmetry. Despite its preditions,this model is nevertheless too simple to be transferred to growth proess in nature. Inthis way, more ompliated growing behavior may ome, for example, from mirosopionsiderations [47℄.
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Chapter 5PACKING PROBLEM. AN EXPERIMENTAL APPROACHIn this Chapter we present an experimental approah to the paking of �exibleelasti strutures. Using a simple experimental setup we have haraterized the ge-ometri features of the shapes adopted by a two-dimensional elasti sheet on�nedto "growth" within a ylindrial �xed struture. In addition, this experimentalsetup has also simultaneously allowed to measure the mehanial fore exerted onthe ontainer by the di�erent on�gurations of the elasti sheet during the growthproess. A phase diagram has then been obtained and ompared with numerialsimulations of the elasti theory of the rods and ylindrial sheets, showing anexellent agreement without any adjustable parameter.5.1 IntrodutionIn the previous hapter we have presented a geometrial desription of the growth pro-ess that ours in biologial soft tissues like �owers and plants. In all given examples,the slender struture grows without any element that on�nes its geometry.In this hapter we study another aspet of the geometry of growth: the behaviorof losely paked objets. In partiular we fous on the paking of slender elastisheets within a �xed ontainer. Our approah will be experimental and our �ndings areompared with numerial simulations of the elasti theory of rods. The possible shapesadopted by elasti rods and their mehanial properties are determined by solving theequation of Euler's Elastia:
B

[
d2κ

ds2
+

(
a2 +

1

2
κ2

)
κ

]
= k , (5.1)where κ is the urvature of the road at ar-length s, B is the bending modulus, a isan undetermined onstant of integration, and k represents the external normal fores.However, this equation does not onsider the physial ondition of self-avoidane, whihis harateristi for the paking proess.Closely paked objets are ubiquitous in nature. Some examples inlude the foldingof leaves in buds, the wing folding of insets in ooons, the rumpled paper or the DNApakaging in apsids. The theoretial treatment of this lass of problems sometimesbeomes very ompliated and numerial or experimental studies are neessary.
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Fig. 5.1: (a) A shemati setup for onial paking. (b) Typial pattern at high on�nement.The di�erent urves appearing during the "growth of the elasti rod" are also de-pited. () A typial pattern observed at lower on�nement showing the emergeneof omplex strutures [21℄.A �rst experimental approah to the paking of elasti slender strutures has beenperformed in onial geometry. It has been inspired by the setup used to study singledevelopable ones [32, 35℄. In this hapter we fous on the early stages of on�nementin whih the paking of the struture remains ylindrial. We know that onial andylindrial geometries are desribed by the same equations, exept for slightly di�er-ent developability onstraints [34℄. In addition, for large on�nements a thin one isequivalent to a ylinder. In the next setion we explain how to design an experimentalsetup that measures simultaneously the fores into the ontainer and the shape of theon�gurations, when a elasti ylindrial sheet grows inside.5.2 Experimental approahThe experimental setup designed for onial paking allows measurements of fores inthe ase of high on�nement. It is also able to easily depit the shapes adopted bythese omplex on�gurations. However, despite the omplexity we an identify thebuilding bloks of these intriate patterns as spiral strutures whih are produed atthe beginning of growth (see Fig. 5.1).Consequently, it is neessary to study in detail the generation of an isolated spiral tounderstand the emergene of more omplex patterns. For this purpose we have designedan experimental setup, as shown in Fig. 5.2.Let us onsider a very long elasti sheet rolled into the shape of a irular ylinderof radius R. The lateral ends of the sheet are glued to eah other and the resulting longylindrial sheet is then introdued into a ylindrial ontainer of inner radius b < R,as is shown in Fig. 5.2.A ylindrial tube serves as a ontainer. The inner radius b of this struture issu�iently small ompared to its height H . Therefore, the omplete devie is axiallysymmetri and onsequently all the ross setions of the ontainer orrespond to the



5.2. Experimental approah 107following two-dimensional paking problem: A losed elasti rod on�ned to growthinto a two-dimensional disk of �xed radius b (see Fig. 5.3(a)). Consequently, we ansay that our experimental approah is quasi-two-dimensional.We are then interested in measuring the pushing fore neessary to move the ylin-drial sheet within the ontainer along the diretion of the axis of symmetry z. Movingslowly the sheet, we are able to measure the tangential fore Ft ating on it. This foreis related to the mean normal pressure P exerted on the ontainer through Coulomb'slaw :
Ft = µ2πbHP , (5.2)where µ is the dynami frition oe�ient between the elasti sheet and the on-tainer. It will be determined experimentally. Note that the measurement of the foremust always be almost onstant, beause the on�nement is isotropi and there is noprivileged diretion on the setion of the sheet that remains attahed to the ontainer.5.2.1 Experimental setupBelow we will desribe the experimental setup that has allowed us to measure the fore.Note that this setup ahieves the goal of simultaneous observation of on�gurationsand measurement of pushing fore. For this purpose we have used a piston-type devie,whih is shematially depited in Fig. 5.2. It is prinipally omposed by the followingparts:

Fig. 5.2: Shemati setup for ylindrial paking. An elasti sheet is glued into a ylinder andintrodued into a ylindrial ontainer of �xed inner radius.1. Container : A ylindrial Plexiglas tube of inner radius b = 2.6[cm] and height
H = 38[cm] whih has been �xed to a retangular struture by means of a squarealuminum platform (17 × 17[cm2]) with a irular hole, whose radius is exatlythe same as the one of the ontainer.
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(a) Cross setional view of the theoretial frame.Some of the typial parameters de�ned in [34℄ aredepited. From [20℄. (b) Cross setional view of a ylin-drial sheet on�ned within theylindrial ontainer. The darkerpiee of the sheet orresponds tothe overlap region.Fig. 5.3: Cross setion of the experimental setup.2. Motor : The retangular struture in whih the ontainer is mounted, supportsin its upper extremity a motor. This devie displaes a vertial frame (maximaldisplaement hmax = 38[cm]) with a onstant veloity v = −vẑ. The veloityand the length of displaement are ontrolled by a omputer. We have used
v = 500[µm/s] in all our experiments. To measure the fore we use a dynamometerwhih is situated at the bottom of the frame (sensitivity: 0, 01[N ], maximumsupported fore: 100[N ]).3. Aluminum dis: At the bottom of this dynamometer we have srewed an alu-minum dis (a piston-like devie, see Fig. 5.2) of radius r = 2.5[cm] < b. Thispiston-like struture moves with the same veloity as the entire devie (frame
+ dynamometer). Finally, the dis displaes the elasti sheet for eah di�erenton�guration within the ontainer.The ylindrial elasti sheets have been obtained using a Mylar sheet of thikness

h = 0.1[mm] and bending modulus B = 6.610× 10−4[Nm]. It has been ut in di�erentsizes to produe multiple on�gurations. As mentioned, the lateral ends of the sheets areglued to eah other to produe several ylindrial strutures with di�erent perimeters
L = 2πR, R being the radius of the ylindrial sheet. Two di�erent ways to glue thelateral ends have been used. They will be explained in the next setion to illustrate thetypial data reorded.



5.2. Experimental approah 1095.2.2 Data reordedThe typial proedure of measurement starts introduing the sheet into the ylindrialontainer. We produe di�erent spiral on�gurations for di�erent values of the perimeterof the sheet. All the on�gurations have been prepared aording to the topologiesobserved in the onial geometry. When the sheet is introdued inside the smallerylindrial ontainer we let it relax to an equilibrium shape, by tapping, in order tominimize the e�et of the frition at the linei self ontats.The bottom of the aluminum dis must almost touh the upper part of the ylindrialsheet. With the help of a omputer, we start the motor at a onstant veloity and thusthe folded sheet is pushed along the inside of the ontainer. The pushing fore Ftis reorded when a steady state is reahed by means of a software that is apable ofreording a measure of the fore aptured by the dynamometer eah 0, 02[seg]. Then,we dispose of 400 data points of the pushing fore for eah on�guration. The sameproedure is repeated for eah on�guration with di�erent values of the perimeter.Finally we an obtain, using Eqn. (5.2) a phase diagram of the exerted pressure asfuntion of the on�nement parameter :
ǫ =

R− b

b
> 0 . (5.3)Typial results of the measurement of the fore are shown in Fig. 5.4 and Fig. 5.5.5.2.3 Mehanial and elasti properties of the sheetIt will be useful to determine experimentally some elasti and mehanial quantitiesrelated to the elasti mylar sheet, suh as the bending rigidity B and the dynamifrition oe�ient µ between the sheet and the ontainer. To measure µ we havedisposed a strip of the mylar sheet inside the ylindrial ontainer and we have measuredthe angle θ from whih the elasti strip begins to move. Then, the dynami fritionoe�ient is given by the simple relation µ = tan θ. In our ase we have determined

µ ≈ 0.37.Now, to determine B we have observed the urvature of an elasti mylar stripprodued by its own weight. Thus, the shape of the strip is desribed by a funtion
z(l) whih veri�es the equation Bz(4) = ρgh [83℄ where ρ is the density of mass, h isthe sheet thikness, g is the gravity. Solving this equation we have:

z(l) =
ρgh

24B
l4 . (5.4)Using a strip without spontaneous urvature we have measured di�erent values ofthe height z and the length l. Fitting these points we �nd B = 0.0006566[Kgm2

s2 ].Experimental values are shown in Fig. 5.6.
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(a) Con�guration I. L = 180 mm, ǫ = 0.102. (b) Con�guration II. L = 202 mm, ǫ = 0.237.

() Con�guration III. L = 207 mm, ǫ = 0.267. (d) Con�guration IV. P = 202 mm, ǫ = 0.378.Fig. 5.7: Cross setional pitures of the �rst symmetri on�gurations for ylindrial pakingin the low on�nement regime. The height of the sheet is H = 140 mm for all theon�gurations. L orresponds to the perimeter of the ylindrial sheet and ǫ is theon�nement parameter. The bright part of sheet orresponds to the overlap region.A �rst bifuration ours ǫ ≈ 0.23.Even though the symmetrial on�gurations are unstable for high on�nement wean observe experimentally some striking on�gurations in the region of oexistene (seeFig. 5.11(f) and ompare the numerial values with Fig. 5.11(e)). It has two loops joinedby a puntual ontat. It exists experimentally between 1.25 < ǫ < 1.9. However, allthese symmetrial on�gurations are unstable with respet to the asymmetrial one inthis region.
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(a) Con�guration V. L = 255 mm, ǫ = 0.561. (b) Con�guration VI. L = 265 mm, ǫ = 0.622.Fig. 5.8: Cross setional pitures of the �rst symmetri on�gurations for ylindrial pakingin the low on�nement regime. The height of the sheet is H = 140 mm for all theon�gurations. L orresponds to the perimeter of the ylindrial sheet and ǫ is theon�nement parameter.In the asymmetrial stable region we observe experimentally that as ǫ inreases,the inner S urve begins to rotate surrounding itself by spiral layers. Therefore, thetransition between the symmetrial and asymmetrial on�gurations is hystereti.5.3.2 High on�nement. A ying-yang-like strutureWhile the size of the outer loop dereases, a ying-yang-like shape appears. It is em-bedded in an e�etive spiral whih serves as a ontainer (see Fig. 5.12). When severalturns have been ompleted around the spiral, the outermost layer is almost a irle (anellipsoidal shape). The shape of the spiral urve has also been determined numerially(see right pitures in Fig. 5.15).Finally we have performed some measures of the fore ating on the ontainer whenthe paking parameter ǫ is extremely high (for the perimeter L = 935[mm], L =
1250[mm], L = 1550[mm], L = 1700[mm] and L = 1970[mm]). The di�erene betweenthese �ve on�gurations is given by the size of the outer loop (see Fig. 5.12).In Fig. 5.13 we depit the obtained values for the dimensionless fore F̃ as funtionof ǫ. In these on�gurations the spiral ontainer oupies almost the whole availablespae within the ylindrial ontainer. However these experimental values do not allowus to obtain onlusive results on how the fore grows for high on�nement.We have observed that the value of the fore is highly dependent on the size of thespiral ontainer and on the number of turns around the spiral on�gurations. In almostall points, the fore seems to grow.
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(a) Con�guration VII L = 285 mm, ǫ = 0.745. (b) Con�guration VII L = 315 mm, ǫ = 0.929.Fig. 5.10: Symmetrial on�gurations. The height of the sheet is H = 140 mm.
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(a) Con�guration VIII L = 305 mm, ǫ =
0.867. (b) Con�guration VIII L = 315 mm, ǫ =

0.929.

() Con�guration VIII L = 340 mm, ǫ =
1.082. (d) Con�guration VIII L = 360 mm, ǫ =

1.204.5.3.3 Measures of the mehanial properties of the pakingThe geometrial desription of the on�gurations may be better understood harater-izing the phase diagram of the dimensionless fore as funtion of the paking parameter
ǫ. They are depited in three �gures: Fig. 5.9 shows the dimensionless fore for sym-metrial on�gurations. In Fig. 5.14 the asymmetrial on�gurations are also depited,showing the oexistene region. In this ase we depit the values of the mean foreating on the ylindrial ontainer. Note that the fore reahes a minimum above
ǫ = 0.29.In both �gures (5.9 and 5.14) we an observe that the on�gurations II and III are
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(e) Con�guration VIII L = 385 mm, ǫ =
1.357. (f) Con�guration VII L = 265 mm, ǫ = 1.357.Fig. 5.11: Evolution of the shape of the sheet when ǫ is inreased. The height of the sheetis H = 140mm. From (a) to (e) all the on�gurations are asymmetrial. In (f)we depit a striking symmetrial on�guration that appears for high on�nementand oexists with a symmetrial on�gurations. However all these symmetrialon�gurations are unstable with respet to the asymmetrial ones in the oexisteneregion.

Fig. 5.12: A ying-yang-like struture for high on�nement. L = 1700 mm.very di�ult to measure, beause their oexistene region is small. After reahing theminimum the fore begins to grow weakly, and when the on�guration VI is reahed, itgrows rapidly and the oexistene region appears. In this view, asymmetri on�gura-
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Fig. 5.13: Measures of fore for high on�nement.tions are learly more stable than the symmetri on�gurations for large on�nements.s
5.3.4 Comparison with the numerial approahNumerial simulations performed by L. Boué [20℄, based on the same experimentalon�gurations adopted by the elasti sheets, have been developed in parallel to thisexperimental approah [21℄. They aount for both elastiity and self-avoidane, whoseinterplay usually yields a variety of possible self-organized patterns. Numerial simula-tions not only agree qualitatively with the experimental shapes, but also quantitativelywith the experimental measures of the dimensionless pressure, as shown in Fig. 5.15.In Fig. 5.15 the dimensionless pressure is depited as a funtion of the on�nementparameter for ylindrial paking. Diamonds orrespond to the experimental values(whih are related with the Fig. 5.14). Continuous lines orrespond to the numerialpreditions based on the theoretial approah of the problem. The dashed lines orre-spond to metastable asymmetrial on�gurations and re�et the hystereti harater ofthe transition. The ross in Fig. 5.14 signals a termination of the asymmetrial branh.Note that the insets represent the on�gurations obtained by numerial simulations.They are ompared with the experimental on�gurations (diamonds). Both on�gura-tions and numerial values of pressure are in good agreement with our experimentalapproah.
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Fig. 5.15: (a) Cylindrial paking. Comparison between experimental (Diamonds) and nu-merial approahes (lines). Dashed line orresponds to metastable asymmetrialon�gurations, re�eting the hystereti harater of the transition. Vertial dashedlines orrespond to separations between di�erent types of experimental and numeri-al on�gurations. These numerial on�gurations are depited as insets, numberedfrom 1 to 9. Vetors ourring in the insets desribe the puntual ontat with theontainer. (b) Experimental and numerial on�gurations for ǫ = 9.4 with a S urvehaving a Ying-Yang-like shape at its enter.hystereti and asymmetrial on�gurations are the starting point for the formation ofspirals as the on�nement inreases.We have ompared our experimental �ndings with numerial simulations whih havebeen performed in parallel to this experimental approah. The �nal omparison is sum-marized in Fig. 5.15. The shape of on�gurations and the values of the dimensionlesspressure obtained in both, experimental and numerial approahes, are in good agree-ment.Finally we mention that in an ideal system we would expet only one spiral. How-ever, in real situations (as our experiment), frition between layers omposing the sheetand the ontainer is ativated for higher on�nement and tends to freeze the spiral on-tainer that surrounds the spiral on�guration. This reates e�etive ontainers withinwhih the same sequene is repeated, generating new spiral patterns, as in the ase ofthe onial paking whih is depited in Fig. 5.1.



Chapter 6CONCLUSIONSIn this thesis we have studied some problems involving one and two-dimensional bio-logial objets that an be desribed at mesosopi sales by its geometrial degrees offreedom. We have been able to inorporate in this formalism the mirosopi proper-ties of materials (Chap. 2) whih an ouple to the geometry. We have foused on twotypes of strutures appearing in nature: lipid vesiles (Chap. 3) and growing soft tissues(Chap. 4). By means of a theoretial framework whih has been outlined in Chap. 2we have used the mehanial and geometrial properties of �uid and elasti membranesto determine the di�erent features of these biologial materials. We summarize theprinipal onlusions obtained in eah ase.Contat angle and line tension in a biphasi vesileIn Chap. 3 we have performed an elasti and mehanial study of the thikness varia-tion between two phases omposing an inhomogeneous lipid membrane. Lipid vesilesare the simplest systems whih allow to ontrol experimentally the properties of moreomplex systems, suh as the plasmi membrane of ells. Inhomogeneous vesiles areomposed of a mixture of three families of lipids with di�erent physial and hemialproperties, whih usually triggers domain segregation. In the presene of holesterol twotypial phases may be observed: the liquid ordered Lo phase, whih is essentially om-posed by holesterol and sphingolipids and the liquid disordered Ld phase, omposedby glyerolipids or phospholipids.A phase separation is observed when the temperature is dereased or the lipid on-entration is hanged from the preferred values. There exists experimental and theoret-ial evidene showing that in a biphasi vesile the adsorption of proteins or impuritiesindues the budding of a Lo domain (whih in the ase of ell membranes are alledrafts). This proess is ontrolled by the line tension ourring at the interfae betweenboth domains. Consequently, it is very important to reveal the physial features of thisline tension, and their possible variations as a funtion of geometri and mirosopie�ets.In the Lo phase the lipid hains are strethed to their maximum, onsequently, athikness mismath between the two phases is produed. This e�et is not onsideredin the usual desription of elasti �uid membranes. The strutural variation may be



122 Chapter 6: Conlusionsdue to internal degrees of freedom, suh as the tilt of lipid moleules or the thiknessdi�erene between them, whih are elastially perturbed at the joint. In this region (oforder the nanometers) the elasti ontinuous models (the Helfrih model, for instane)is no longer valid.We have proposed an elasti model aounting for this strutural variation at thejoint. It inorporates the thikness variation, the gradients of mean urvature and thevariation of the onentration of proteins and impurities that are loated at the ontatline.As a result, we have observed that at the joint, for eah domain, we have a slopedisontinuity of the large sale solution. We have also obtained a height variationbetween the neutral surfaes of eah domain. Both features imply the existene ofa �nite ontat angle between domains. This ontat angle may be inorporated inan e�etive line tension, whose angular dependene is quadrati. The line tension isresponsible for the stability of the budding proess, beause it tends to derease thelength of the ontat line at the joint, favoring their separation.Finally we have also onsidered an additional agent, the presene of impurities orproteins at the joint. These moleules hange loally the spontaneous urvature of eahdomain and onsequently, the values of the line tension, favoring again the instability ofthe budding proess. This is beause the oupling onstant depends on the spontaneousurvature whih, in turn, hanges the ontat angle and therefore the line tension. Wehave shown that the line tension always inreases as a funtion of the spontaneousurvature.Growth of thin elasti membranes with onstant GaussianurvatureIn Chap. 4 we have presented a study of the geometrial properties of the growth ofelasti membranes having a non-Eulidean geometry. Our prinipal motivation omesfrom the morphogenesis of ertain types of plants and �owers ourring in nature, suhas the Brugmansia or the Da�odils.We have used some previous results on the elastiity of growing soft tissues whihreveal that the growth an be interpreted as a proess by whih the distane between twopoints on the surfae is �xed to a given value. Consequently, by the Gauss TheoremaEgregium, the Gaussian urvature of the surfae is also �xed at eah instant.In order to understand the mehanial and geometrial properties of the growingmembrane, we have proposed a dynami model that allows to obtain surfaes with on-stant Gaussian urvature (negative and positive) from the evolution of an initial losedurve. This theoretial model is partiularly useful to alulate geometri and energetiproperties of non axisymmetri surfaes in a numerial way. It an be easily general-ized to surfaes with arbitrary Gaussian urvature and onsiders the reparametrizationinvariane of the surfae and the Hamiltonian struture of the free energy, whih anbe interpreted as an ation.



123In partiular, we have foused on two examples that are relevant to desribe theshape adopted by growing soft tissues in nature. As �rst example we have omparedthe bending elasti energy of di�erent surfaes having onstant Gaussian urvature.We have onsidered as speial ase the pseudosphere, whih an be generated by theevolution of a losed planar irle of �xed length. Then, we have weakly perturbed thisinitial ondition in its wave number, so as to obtain adjaent surfaes to it, having thesame geometrial properties (KG). As a result we obtain that the pseudosphere hasthe minimal bending energy when ompared with all the others surfaes. The energyof these surfaes inreases with the square of the perturbation parameter.As seond example we have onsidered surfaes of positive and onstant Gaussianurvature (spherial surfaes). We have onstruted a pieewise surfae in order tomodel a growing soft tissue exhibiting singularities at the beginning of the growthproess. This linei singularities an be interpreted as veins whih grow following thegrowing surfae. On these veins, the strething energy is ondensed and the bendingenergy beomes in�nite. Strething appears in order to avoid the singularities. We haveompared surfaes with di�erent numbers of veins and piees. As a remarkable resultwe have found that the surfae with n = 5 has the minimal elasti energy when it isompared with surfaes that grow from initial urves having the same length, and withthe same �nal time. The ase n = 5 orresponds indeed to most ases observed in plantmorphogenesis.Experimental approah to ylindrial pakingIn Chap. 5 we have used a simple experimental setup to explore the suessive on�g-urations leading to the formation of a spiral during the paking proess. Paking is aphenomenon that studies how low-dimensional objets (suh as elasti rods or sheets)behave when they are onstrained to grow within an objet with �xed geometry.Although this problem is very omplex from a theoretial point of view, someprogress an be ahieved from numerial and experimental approahes. We have thenstudied the paking of ylindrial elasti sheets in the early stages of on�nement. Us-ing a simple experimental setup we have observed the formation of the �rst fold and itssubsequent evolution during the paking, until the formation of the spiral. The asadeof bifurations leading to this omplex pattern has been also haraterized. The ap-pearane of the spiral is a onsequene of the breakdown of symmetry presented in theearly on�gurations. This breakdown produes asymmetrial on�gurations, whih aremore stable from the point of view of the pressure exerted on the ontainer. Then, thespiral struture and its ompliated evolution allows the redution of pressure insidethe ontainer.In parallel to the mehanial desription of the di�erent on�gurations, measure-ment of the on�nement fore as a funtion of the paking parameter have also beenperformed in order to obtain a phase diagram showing the di�erent on�gurations andtheir evolution. Consequently, we have determined the minimum of this fore and the



124 Chapter 6: Conlusionshystereti region where the asymmetrial on�gurations appear.Our experimental �ndings have been ompared to numerial simulations of the elas-ti theory of rods. The geometry of on�gurations and the values of the dimensionlesspressure obtained in our experiments are in good agreement with the values obtainedby the numerial simulations.In onlusion, in this thesis, we try to understand important features of �uid andelasti membranes, their shape modi�ation under onstraints and their relevane tobiologial proesses.



Appendix AA QUICK GLANCE TO DIFFERENTIAL GEOMETRY OFSURFACES AND CURVESIn this Appendix we give the basi onepts and formulas of the di�erential geometryof surfaes and urves, that have been used in the ourse of this thesis. Some exellentreferenes that an be viewed as support material are [31, 39, 73, 80, 99, 131℄.A.1 SurfaesLet ω a two-dimensional open subset in R
2. An orientable surfae denoted by theset Σ := X(ω) is de�ned (extrinsially) by means of an embedding vetorial fun-tion X whih is a smooth injetive immersion X : ω → E

3. Here E
3 denotes thethree-dimensional Eulidean spae. Moreover, this surfae may be onsidered as a twodimensional manifold endowed with a set of urvilinear oordinates labeling the pointsof ω. In this sense we require two tensors in order to de�ne the surfae Σ: the �rst andseond fundamental forms denoted as gab and Kab, respetively.A.1.1 First fundamental form. The intrinsi geometry of ΣLet us onsider a two dimensional vetor spae (whih an be identi�ed with R

2) inwhih two vetors ea, a ∈ {1, 2} form a basis. Let xa be the oordinate of a point p ∈ R
2.If the mapping X : ω → E

3 is injetive, eah point P ∈ Σ an be unambiguously writtenas:
P = X(p) , p ∈ ω , (A.1)and thus the two oordinates xa of p are alled the urvilinear oordinates of P .If the mapping X is di�erentiable at p (of lass r ≥ 1) then at eah point P ∈ Σwe an de�ne the two following linearly independent vetors:

ea := ∂aX :=
∂X

∂xa
, (A.2)whih form a loal ovariant basis of the tangent plane to the surfae Σ at P .The Eulidean metri on E

3 indues a metri g on the surfae Σ. Its ovariant



126 Appendix A: A quik glane to Di�erential Geometry of Surfaes and urvesomponents are de�ned as:
gab = ea · eb . (A.3)The tangent vetors de�ned in (A.2) are neither orthogonal nor normalized in gen-eral. The orientation of Σ is de�ned by N , the unit normal vetor to the surfae:

N :=
e1 × e2

| e1 × e2 |
. (A.4)This vetor together with the two tangent vetors forms a loal basis in R

3. It isevident that ea · N = 0 and N · N = 1. Both equations determine N only up to asign. Here we assume that the surfae is orientable and therefore a sign an be hosenonsistently. Hereafter, if the surfae is losed (as a sphere), the unit normal will behosen pointing outward.So far we have de�ned the metri tensor g using the embedding funtions X. Thisovariant seond order tensor is symmetri and positive de�nite. It is useful to expressthe area and length elements at a point P on Σ. To do this, we de�ne the ontravariantomponents of the dual tensor of the metri:
gabg

bc := δc
a , gab = (gab)

−1 , (A.5)where δc
a is the Kroneker symbol. The metri and its inverse an be used to raiseand lower indies of other tensors. As usual, repeated indies (one up and one down)imply a summation.To alulate the in�nitesimal area element dA we need to use the determinant ofthe metri:

g := det(gab) = g11g22 − g12g21 , (A.6)and it is easy to show that:dA =| e1 × e2 | dx1dx2 =
√
g d2x . (A.7)It is also useful to de�ne the epsilon tensor εab:

εab := N · (ea × eb) , (A.8)whih is antisymmetri in its two indies εab = −εba. It an also be de�ned as atensor density if we use the total antisymmetri symbol ǫab.
εab =

√
gǫab, εab =

ǫab√
g
, (A.9)where ǫ12 = −ǫ21 = 1 and ǫ11 = ǫ22 = 0.



A.1. Surfaes 127The ovariant derivative and the Riemann tensorThe metri gab determines the intrinsi geometry of the surfae Σ. It allows us tode�ne the unique torsionless ovariant derivative noted as ∇a, ompatible with it. Thisovariant derivative an be written in terms of the Christo�el symbols, Γc
ab. For a vetor�eld va de�ned on Σ it reads:

∇av
b := ∂av

b + Γb
acv

c , (A.10)where the Christo�el symbols of the seond kind are de�ned by the following relation:
Γc

ab := gcded · ∂aeb =
1

2
gcd(∂agbd + ∂bgda − ∂dgab) . (A.11)By ating on a tensor, the ovariant derivative again yields a tensor, unlike thepartial derivative. The ompatibility ondition of ∇a with the metri is de�ned by theonditions:

∇agbc = 0 , (A.12a)
[∇a,∇b]f(x) = (∇a∇b −∇b∇a) f(x) = 0 , (A.12b)where f(x) is a salar funtion de�ned on Σ and the brakets [·, ·] express theommutation of the ovariant derivative. If it is applied to a ontravariant vetor �eld

vc it produes:
[∇a,∇b]v

c := Rc
dabv

d , (A.13)where Rc
dab is the intrinsi Riemann urvature tensor. We an also de�ne the Riitensor, whih is given by the ontration of the Riemann tensor Rab := Rc

acb. Afurther ontration give us the intrinsi salar urvature, also know as the Rii salar
R := gabRab. A.1.2 Seond fundamental formA two-dimensional surfae annot be de�ned by its metri alone. For instane, a �atsurfae may be deformed into a portion of a ylinder or a portion of a one withouthanging the length of a urve on it. However, a ylinder and a one are not identialsurfaes. It is therefore intuitive that the missing information is provided by the urva-ture of the surfae Σ. This property of a surfae an be represented by a seond ranksymmetri tensor alled the extrinsi urvature tensor, whose ovariant omponents aredenoted by Kab.A natural way to determine this notion onsists in speifying how the urvature ofa urve C on Σ an be omputed. A moving trihedron de�ned in every point of theurve allows us to de�ne its urvature κc > 0. This urvature an be deomposed intoa part whih is due to the fat that the surfae is urved in E

3 and a part whih is dueto the fat that the urve is itself urved. The former is alled normal urvature and



128 Appendix A: A quik glane to Di�erential Geometry of Surfaes and urvesthe latter is alled the geodesi urvature. The normal urvature is given by:
κn = (−N · ∂aeb) ẋ

aẋb , (A.14)where the expression in brakets is reognized as the extrinsi urvature tensor :
Kab := −N · ∂aeb = ea · ∂bN . (A.15)Note that the omponents of this tensor form a 2 × 2 real matrix and therefore itan always be diagonalized. In partiular the eigenvalues c1, c2 of the mixed matrix

Kb
a = gcbKac are alled the prinipal urvatures of the surfae.Two salars an be de�ned for the tensor Kb

a. The �rst is the trae of the extrinsiurvature tensor :
K := Tr(Kb

a) = c1 + c2 , (A.16)and the Gaussian urvature:
KG := Det(Kb

a) = c1c2 . (A.17)In the literature one often �nds the mean extrinsi urvature funtion, whih isde�ned by the relation H = K/2.A.1.3 The Gauss and Weingarten equationsThe extrinsi urvature tensor allows us to alulate the partial derivatives of the loalframe vetors {ea,N} de�ned on Σ. To proeed note that the normal vetor is a unitvetor and therefore we have N · ∂aN = 0. Thus the partial derivative ∂aN must bea tangent vetor. Using the de�nition (A.15) we obtain the Weingarten equations:
∇aN = ∂aN = Kb

aeb . (A.18)Now, for the tangent vetor ea we use the equations (A.11) and (A.15) to obtainthe Gauss equations:
∇aeb = −KabN , (A.19)or equivalently:

∂aeb = Γc
abec −KabN . (A.20)A.1.4 Integrability onditions and Gauss' Theorema EgregiumThe intrinsi and the extrinsi geometries of Σ, determined respetively by the tensors

gab and Kab annot be spei�ed independently. They are related by the integrabilityonditions of Eqns. (A.18) and (A.19). We assume that the embedding funtions Xare of lass r > 3 and therefore we have the following ommutation relations of the



A.1. Surfaes 129seond partial derivatives:
∂a∂bec = ∂b∂aec . (A.21)These relations give us the Gauss-Codazzi and the Codazzi-Mainardi equationswhih are respetively given by:

Rabcd −KacKbd +KadKbc = 0 , (A.22a)
∇aKbc −∇bKac = 0 . (A.22b)The relations (A.22a) and (A.22b) arise from the re-writing of the onditions Eqn.(A.21) in the form of the equivalent relations ∂aceb · ed = ∂abec · ed and ∂aceb · N =

∂aceb · N , respetively.The funtions Rabcd onstitute the ovariant omponents of the Riemann urvaturetensor. They an be expressed in terms of the Christo�el symbols as:
Ra

bcd := ∂cΓ
a
db − ∂dΓ

a
cb + Γa

ceΓ
e
db + Γa

deΓ
e
cb . (A.23)This relation is intrinsi, beause it is de�ned only using the metri tensor and itsderivatives and does not depend on the normal vetor N . A fundamental theorem forsurfaes states that given the two symmetri tensor gab and Kab the equations thatde�nes them are neessary and su�ient for the existene of an embedding that de�nea surfae with these tensors as its �rst and seond fundamental form. This embeddingis unique, up to rigid motions in E

3.Contration of the equations (A.22a) and (A.22b) with the ontravariant metri gabresults in:
R−K2 +KabK

ab = 0 , (A.24a)
∇aK

a
b −∇bK = 0 , (A.24b)whih are entirely equivalents to the equations (A.22a) and (A.22b) for a two-dimensional surfae.In this dedution we have used the Rii tensor and the intrinsi salar urvature,both previously de�ned in A.1.1. Now using these de�nitions and the de�nition of theGaussian urvature in Eq. (A.22a) we obtain:

Rabcd = KG(gacgbd − gadgbc) , (A.25a)
Rab = KGgab , (A.25b)
R = 2KG . (A.25)As a onsequene we have that the de�nitions of the funtions Γc

ab and Γabc implythat the Gauss equations and the Codazzi-Mainardi equations are redued to one andtwo equations respetively. By a simple inspetion we have:
R1212 = Det(Kab) , (A.26)



130 Appendix A: A quik glane to Di�erential Geometry of Surfaes and urvesand onsequently the Gaussian urvature at eah point of Σ an be written as:
KG =

R1212

g
. (A.27)This equation is the manifestation of the Gauss' Theorema Egregium whih statesthat the Gaussian urvature at eah point on Σ, whih is originally de�ned in anextrinsi way, only depends on the �rst fundamental form and its partial derivatives oforder ≤ 2 at the same point. Thus, KG is an intrinsi property of the surfae.A.1.5 The Gauss-Bonnet theoremAnother striking result involving the Gaussian urvature is the Gauss-Bonnet theorem.It an be stated as follows: Let Σo a simple onneted surfae path (a two-dimensionalRiemannian manifold) with boundary ∂Σo. Let KG be the Gaussian urvature of Σo,and let κg be the geodesi urvature of ∂Σo. Then:

∫

Σo

dA KG +

∫

∂Σo

ds κg = 2πχ(Σo) , (A.28)where KG is the Gaussian urvature of Σ, κs is the geodesi urvature of ∂Σo, dAis the element of area of the surfae, ds is the line element along the boundary of ∂Σoand χ(Σo) is the Euler harateristi of Σo.If the boundary ∂Σo is pieewise smooth, then we interpret the integral over thegeodesi urvature as the sum of the orresponding integrals along the smooth portionsof the boundary, minus the sum of the angles αi by whih the smooth portions turn atthe orners of the boundary:
∫

Σo

dA KG +

∫

∂Σo

ds κg = 2πχ(Σo) −
∑

i

αi . (A.29)This theorem onnets the geometry of a surfae in the sense of the urvature to itstopology, given by the Euler harateristi whih is a topologial invariant. Applyingthis theorem partiularly to ompat boundaryless surfae Σ, one obtains:
∫

Σo

dA KG = 2πχ(Σ) = 4π(1 − g) . (A.30)This relation states that the total Gaussian urvature of suh a losed surfae Σ isequal to 2π times the Euler harateristi of the surfae, a topologial invariant. Theseond equality only works for orientable surfaes. Any orientable ompat surfaewithout boundary is topologially equivalent to a sphere with some handles attahed,and the genus g ounts the number of handles. The sphere has genus 0, the torus genus
1, et.



A.2. Geometry of a urve on a surfae 131A.2 Geometry of a urve on a surfaeIn this setion we desribe the geometrial properties of a urve C whih lies on a surfae
Σ. These de�nitions are used prinipally in Chapters 2, 3 and 4.A.2.1 Darboux frameLet us onsider the on�guration of the Fig. 4.2. At every point of C we an de�nea natural moving frame in E

3, omposed by the vetors {t, l,N}. This orthonormaltrihedron is alled the Darboux frame, where t = taea is the unit tangent vetor to C,
N is the surfae unit normal and we de�ne l = N × t. Note that this vetor l = laeais tangential to Σ and normal to C. We also suppose that the urve is not singularand we an always de�ne its urvature κc. If we de�ne ∇‖ = ta∇a as the diretionalsurfae derivative in the diretion t we an write the following three equations relatingthe geometrial properties of C:

∇‖t = κgl + κnN , (A.31a)
∇‖l = −κgt + τgN , (A.31b)

∇‖N = −κnt − τgl , (A.31)where κg is the geodesi urvature, whih orresponds to the urvature κc of Cprojeted onto the surfae tangent plane. The quantity κn is the normal urvature,denoting the urvature of C projeted onto the plane ontaining the vetors {t,N}.Finally we have τg, the geodesi torsion whih orresponds to the rate of hange of Naround t when the trihedron moves on the urve. The geodesi urvature expresses thefat that the urve itself is urved and the normal urvature measures the e�et of thesurfae on the urvature of the urve.A.2.2 Projetions of the extrinsi urvature onto COtherwise, the geometri properties of the surfaes Σ an be deomposed on the tangentbasis {t, l}:
K‖ = tatbKab = −N · ∇‖t , (A.32a)
K⊥ = lalbKab = N · ∇⊥l , (A.32b)
K‖⊥ = −latbKab = N · ∇‖l = −N · ∇⊥t , (A.32)where we have de�ned ∇⊥ = la∇a the surfae derivative in the diretion l. As aonsequene we have that κn = −K‖ and τg = K‖⊥. Note that the trae of the extrinsiurvature tensor is given by:

K = K‖ +K⊥. (A.33)Finally it is very useful to express the projetions of the Codazzi-Mainardi equations



132 Appendix A: A quik glane to Di�erential Geometry of Surfaes and urves(A.24b) onto the tangent basis {t, l}. They read:
∇⊥K⊥‖ = ∇‖K⊥ + (K‖ −K⊥)l · ∇⊥t + 2K⊥‖t · ∇‖l , (A.34a)
∇⊥K‖ = ∇‖K⊥‖ + (K‖ −K⊥)t · ∇‖l − 2K⊥‖l · ∇⊥t , (A.34b)



Appendix BTHICKNESS VARIATIONS AND THE MODIFIEDHELFRICH ELASTICITYIn this appendix we brie�y outline how to derive the additional oupling terms om-ing from the mirosopi degrees of freedom to the usual elasti desription based onthe Helfrih model. These additional terms involve the thikness variation indued byhomogeneous and inhomogeneous bending deformations, and also by the loal streth-ing. These ontributions an be extended to the total surfae, but they are exited inpartiular at the joint between the phases omposing the vesile.B.1 Loal elasti strething. Area-Di�erene between innerand outer hydrophili surfaesThe area of the hydrophili outer surfae Σ(+) hanges in two ways. The �rst step isrelated to the extension-ompression of the monolayer during an homogeneous bendingdeformation. The seond ontribution, related to the inhomogeneous bending, will beexamined in the next setion.A simple way to inorporate the oupling terms between the thikness and thegeometri quantities related to the neutral surfae Σ is to assume that there is a loalstrething term whih takes into aount the di�erene ∆Ah between the areas of bothhydrophili surfaes (inner and outer):
Fh[X] =

∫

Σ

dA(fh

a

)
, (B.1)where fh is an homogeneous free energy density. In �rst approximation this term islinear in ∆Ah, beause the loal di�erene of area is a small quantity.The strething and bending terms that we will onsider here for eah phase are thenexpressed by:

Fh[X] =

∮

Σ(+)

dA(+)f (+) +

∮

Σ(−)

dA(−)f (−) , (B.2a)
f (I)(A(I), H(I), H(I)

s ) =
K(I)
2

(
A(I) − A(I)

o

)2
+
κ(I)
2

(
2H(I) −H(I)

s

)2
, (B.2b)



134 Appendix B: Thikness variations and the modi�ed Helfrih elastiitywhere A(I) is the surfae area of eah side (inner and outer), A(I)
o is the preferredarea of eah monolayer, H(I) is the mean urvature, κ(I) is the bending sti�ness and

K(I) is the area-strething elastiity oe�ient. Note that in the expressions (3.1a) and(3.1b) we have removed the label i denoting the two phases.As we will show in the next setion, the in�nitesimal area element dA(I) (resp. innerand outer) is related to dA, whih is de�ned on the neutral surfae, by means of anexpansion to leading orders:
dA(I) = dA

(
1 ± 2Hη(I) +KGη(I)2 +

1

2
∇aη(I)∇aη

(I) + . . .

)
. (B.3)Now we need to express the geometry of the hydrophili areas A(+) and A(−) withrespet to the neutral surfae area A. We have:

A(±) = A±
∫

Σ

dA 2η(±)H +

∫

Σ

dA η(±)2KG , (B.4)and for the mean urvature:
H(±) = H ± η(±)(C2

1 + C2
2 ) , (B.5)where C1 and C2 stand for the prinipal urvatures on Σ. The hoie of the neutralsurfae Σ as referene surfae is onvenient beause the deformation of strething andbending are independent when they are de�ned with respet to Σ. As a onsequenethe area of the neutral surfae does not hange during the deformation of bending. Inthis ase this hoie provide us the following relation between η(+) and η(−):

K(+)η(+)(x)

A
(+)
o

− K(−)η(−)(x)

A
(−)
o

= 0 , (B.6)and now if we replae the equations (B.4) and (B.5) in (B.2a) after a long but trivialalulation we obtain:
fh

a
=

1

2
κ(2H −Hs)

2 + κKG + 2ΛHu+ u2KGδ + λ , (B.7)where the oe�ients are ompliated funtions of the physial parameters. Forinstane we have:
κ = κ(+) + κ(−) , (B.8)
κ = κ(+) + κ(−) , (B.9)

Hs =
κ(+)H

(+)
s + κ(−)H

(−)
s

κ(+) + κ(−)
, (B.10)

Λ =
K(+)K(−)(A

(+)
o − A

(−)
o )

K(+)A
(−)
o +K(−)A

(+)
o

, (B.11)
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δ =

K(+)K(−)(K(+)A
(−)
o −K(−)A

(+)
o )(A

(+)
o − A

(−)
o )

(K(+)A
(−)
o +K(−)A

(+)
o )2

, (B.12)All these expressions are valid for eah domain. Note that we have omitted the label
i ∈ {1, 2} denoting eah phase omposing the vesile.B.2 Thikness gradients and inhomogeneous bendingAs mentioned earlier in Se. 3.3.1 the inhomogeneous bending ontribution an beisolated onsidering the following free energy:

f
(I)
nh = ξ(I)∆A(I)

nh , (B.13)whih represents the hange of energy per lipid moleule arising from the extensionof the hydrophili surfae. From now on we will perform the alulations using theouter monolayer. As shown in Fig. (3.4) an inhomogeneous bending deformation isre�eted in the appearane of an non-zero angle ω between the outer unit normal N (+)and the unit normal to the neutral surfae N . In this ase the hydrophili surfae isnot parallel to the neutral one.The additional extension is aounted for by the term:
∆A

(+)
nh =

a(+)

cosω
− a(+) , (B.14)where a(+) is the area per lipid moleule on the hydrophili surfae. Now we needto express Eqn. (B.14) as a term depending on the thikness gradient. To do this notethat the hydrophili surfae of eah monolayer is determined by a radius vetor:

X(±) = X ± η(±)(x)N . (B.15)With this expression and the de�nitions introdued in the App. A we an relatethe geometrial harateristi of Σ(+) through the geometrial properties of Σ. Thesequantities will be given as expansions in series up to order two on the distane η(+).For instane, the determinant of the metri g(+) = Det(g(+)
ab ) an be expressed as:

g(+) =
(
1 + 4Hη(+) + 4H2η(+)2 + 2KGη(+)2 + . . .

)
, (B.16)where we have used an identity valid for any tensor Mab in two-dimensions:Det(gab +Mab) =

(
1 +Ma

a +
Det(Mab)Det(gab)

)Det(gab) , (B.17)where gab is the metri tensor and Ma
a = gabMab is the trae of the tensor Mab.As a onsequene the area per moleule on the hydrophili surfae (inner and outer)



136 Appendix B: Thikness variations and the modi�ed Helfrih elastiityorresponding to an homogeneous bending at the dominant order is given by:
a(I) = a

(
1 ± 2Hη(I) +KGη(I)2 + . . .

)
, (B.18)where a is the area per moleule measured on the neutral surfae. To alulate

cos(ω) we need the expression for the the hydrophili unit vetor. It reads:
N (+) =

θ1N −
[
(1 + 2H)∇cη

(+) + η(+)∇aη
(+)Ka

c

]
ec

√
θ2
1 + θ2(∇η)2 + 2η(1 +Hη)(∇aη)(∇bη)Kab

(B.19)where the funtions θ1 = a(+)/a and θ2 = g(+)/g are de�ned by:
θ1 = 1 + 2Hη(+) +KGη(+)2 + . . . , (B.20a)
θ2 = 1 + 4Hη(+) + 4H2η(+)2 + 2KGη(+)2 + . . . . (B.20b)Heneforth by simpliity we drop the symbol (+). From Eqn. (B.19) we alulatediretly cosω = N · N (+). It reads:

cosω =
θ1√

θ2
1 + θ2(∇η)2 + 2η(1 +Hη)(∇aη)(∇bη)Kab

, (B.21)where Kab is the urvature tensor of the neutral surfae Σ. The third term in Eqn.(B.21) is of order three in η and therefore it an be negleted. Then, expanding theterms in the root, the value of secω is given by:
secω = 1 +

1θ2
2θ2

1

(∇η)2 (B.22)Using Eqn. (3.4) and Eqn. (B.22) the energy of the inhomogeneous bending is:
fnh = ξ[a(1 + 2Hη + η2KG)(1 +

1θ2
2θ2

1

(∇η)2) − a(1 + 2Hη + η2KG)];

fnh = ξ
1

2
a
θ2
θ1

(∇η)2 . (B.23)Finally at the leading order in η it is given by:
fnh =

1

2
aξ(1 − 2Hη −KGη2 − ...)(∇η)2

fnh =
1

2
ξa(∇η)2 , (B.24)The alulation for the inner layer (−) is similar. It is only neessary to hangethe oe�ient ξ(−), the normal distane η whih in this ase is η(−) and take the minussign in Eqn. (B.18). The total energy is �nally given by the sum of both ontributions



B.2. Thikness gradients and inhomogeneous bending 137(inner and outer) . It an be easily obtained using the relation between η(+), η(−) and
u expressed in the de�nition of the neutral surfae Σ as was mentioned before. Finally,the total energy over the neutral surfae is obtained integrating the density of energyper moleule area fnh:

Fnh[X] =

∫

Σ

dA(fnh

a

) (B.25)
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Bibliography 151Résumé:Cette thèse est onsarée à l'étude théorique des membranes �uides, omme les vésiuleslipidiques, et des membranes élastiques omme les tissus vivants. Nous avons utilisé desméthodes alliant alul variationnel et géométrie di�érentielle des surfaes pour dérire lesdivers aspets méaniques et topologiques de es objets et leur in�uene sur leur omportementphysique et biologique.Dans une première partie nous avons abordé le problème de la tension de ligne entredeux domaines qui omposent une vésiule inhomogène. A partir d'un modèle modi�ant ladesription habituelle de es membranes, nous avons montré que les variations struturellesde l'épaisseur de la membrane au raord impliquent l'existene d'un angle de ontat e�etifet, par onséquent, une augmentation de la tension de ligne. Nous avons aussi disuté le r�ledes impuretés qui se loalisent autour de ette ligne de ontat.Dans une deuxième partie nous avons étudié la roissane des tissus vivants. Pour les objetsmines, elle ontribue à �xer la géométrie intrinsèque, 'est-à-dire la ourbure de Gauss. Nousavons proposé un modèle dynamique permettant de générer des surfaes à ourbure de Gaussonstante. Ces surfaes ont été omparées à la forme de ertaines �eurs.La dernière partie à été onsarée à l'étude expérimentale du on�nement d'une feuilleélastique ylindrique à l'intérieur d'un objet de géométrie �xée. Nous avons aratérisé lespatrons et le diagramme de phase de la fore exerée par es on�gurations au début de laroissane.Mots-lés: Élastiité - Membranes Lipidiques -Tension de Ligne - Croissane des TissusVivants - Calul Variationnel - Géométrie Di�érentielleAbstrat:This thesis is devoted to the theoretial study of �uid membranes, suh as lipid vesiles, andelasti membranes like living tissues. We have used the methods of di�erential geometry ofsurfaes and variational alulus to desribe the topologial and mehanial aspets of theseobjets and their in�uene on their physial and biologial harateristis.In the �rst part, we have disussed the problem of the line tension between two domainsomposing an inhomogeneous lipid vesile. Using a model that modi�es the usual desriptionof �uid membranes we have shown that the strutural variations of the thikness at the jointimply the existene of a ontat angle and, onsequently, an inrease of the line tension. Wehave also disussed the role of impurities whih adhere at the ontat line.In the seond part, we have studied the growth of living tissues. For slender objets thisproess ontributes to �x the intrinsi geometry i. e., the Gaussian urvature. We have pro-posed a dynami model allowing the prodution of surfaes with onstant Gaussian urvature.These surfaes have been ompared with the shape of ertain �owers.The last part is devoted to the experimental study of ylindrial paking of an elasti sheetwithin an objet of �xed geometry. We have haraterized the patterns and the phase diagramof the fore exerted by these on�gurations in the early stages of the growth.Keywords: Elastiity - Lipid Membranes - Line Tension - Growth of Living Tissues -Variational Calulus - Di�erential Geometry


